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Abstract

The human brain is a remarkable computing machine, i.e.
vastly parallel, self-organizing, robust, and energy efficient.
To gain a better understanding into how the brain works, a
cyborg (cybernetic organism, a combination of machine and
living tissue) is currently being made in an interdisciplinary
effort, known as the Cyborg project. In this paper we describe
how living cultures of neurons (biological neural networks)
are successfully grown in-vitro over Micro-Electrode Arrays
(MEAs), which allow them to be interfaced to a robotic body
through electrical stimulation and neural recordings. Fur-
thermore, we describe the bio- and nano-technological pro-
cedures utilized for the culture of such dissociated neural
networks and the interface software and hardware frame-
work used for creating a closed-loop hybrid neuro-system.
A Reservoir Computing (RC) approach is used to harness the
computational power of the neuronal culture.

Introduction
Engineered products are generally constructed from a num-
ber of unique, heterogeneous components assembled in very
precise ways according to elaborate blueprints made by their
designers. In contrast, life applies a completely different en-
gineering paradigm to construct complex, reliable and adap-
tive structures, e.g. biological neural networks, from a basic
set of organizational principles. Considering the functional-
ity of living systems, the translation of these principles into
technology will enable broad areas of engineering to move
towards frontiers not reachable by current methodology.

Our brains are able to achieve prodigious feats of compu-
tation with remarkable speed and efficiency, including nav-
igation in complex environments, object recognition, de-
cision making, and reasoning. Many of these tasks have
not been adequately solved using algorithms running on our
most powerful computers. When one examines the physi-
cal structure of biological neural networks, it is indeed very
difficult to understand how such systems are able to grow,
self-organize, and perform computation.

Self-organization and growth are properties that not only
challenge the common top-down engineering paradigm, but
also challenge the basic view of what an engineered sys-
tem is and its functionality (behavior). The design of com-

plex, reliable and adaptive structures requires to move to-
wards bottom-up design principles. An approach for a de-
sign concept for such autonomous systems capable of de-
veloping complex heterogeneous morphologies is Morpho-
genetic Engineering (Doursat et al., 2012); a concept where
structures emerge as a product of interaction between au-
tonomous units. Whatever the motivation for engineering
a system is, there exist some target purpose for the system.
Herein the target is computation or information processing.
As such, the self organizing structure is the architecture for
an information processing device. This architecture is a non-
static structure and thereby giving rise to non-static func-
tionality, i.e, a two way coupling between dynamic struc-
ture and functionality –a system with a possibility of induc-
ing perturbations to its own dynamics as a function of its
system states, which enables state space trajectory changes
and topological reconfigurations of the state space (Omholt,
2013) —A Dynamical Systems with Dynamical Structures
((DS)2) (Spicher et al., 2004).

In the last few years, the development of techniques to
record and stimulate extracellular potentials using Micro
Electrode Array hardware has opened new possibilities for
the embodiment of in-vitro living neurons with robotic bod-
ies. Biological neural networks that develop when con-
nected to a body can exploit sensory information to shape
aspects of the neural network itself. In addition, connect-
ing neuronal networks to the outside world through sensory
perception might be important to understand cognitive func-
tions in the wide sense (through embodiment).

The Cyborg project aims at developing a cyborg by al-
lowing communication between a machine and in-vitro hi-
erarchical neural network. Such an approach has advantages
compared to in-vivo systems, as it allows growing tailored
neural networks with target functionalities as well as con-
trolling their regulatory structure. Major conceptual and
methodological advances are expected in the following ar-
eas:

• Technological: hybrid biological-artificial computers, cy-
borg technology, and brain-machine interfaces. For exam-
ple, the inclusion of morphogenetic principles into com-



puter architecture may decrease energy consumption. In
systems with limited energy availability, i.e. drones and
robots, principles from small plastic networks may allow
complex computation, e.g. a dragonfly can intercept a
moving midair target with a network of only 16 neurons
(Gonzalez-Bellido et al., 2013).

• Biomedical: regenerative and translational neuroscience,
modelling and understanding damage and repair pro-
cesses applicable to trauma or neurodegenerative disease,
and developing novel approaches in nanomedicine and
personalized medicine. Being able to elucidate how bio-
logical neural networks self-organize and grow may pro-
vide a stepping stone towards novel neuro-rehabilitation
techniques.

• Philosophical: basic issues around neuronal functions are
investigated. In the long term, studying the mechanism
of memory, learning, concept formation, and neuronal
model building of the external world may lead to a bet-
ter understanding of the emergence of consciousness.

This paper presents an infrastructure for a closed-loop
neuro-system that provides the capability for recording and
stimulation of an in-vitro neuronal culture. The biological
neural network is exploited as a reservoir of dynamics in or-
der to provide control of an embodied agent, i.e. a cyborg.
Results of spontaneous recordings of pace-maker neural ac-
tivity are given, together with responses under stimulation
(electrical and chemical) that serve as proof-of-concept of
neural training. Further, results of neuro-controlled agent in
a closed-loop system are presented. The paper is laid out
as follows: Section 2 provides background information and
Section 3 outlines the experimental setup. In Section 4 the
experimental results are presented together with analysis.
Section 5 concludes and Section 6 explores future works.

Background
Reservoir Computing
Artificial neural networks (ANNs) represent a class of com-
putational models that take inspiration from biological neu-
ral networks (BNNs). In ANNs, artificial neurons (the com-
puting elements) are typically arranged in layers, i.e. neu-
rons in one layer are connected to neurons in the next layer
and information flows in a feed-forward fashion. Artificial
recurrent neural networks (RNNs) are a more plausible and
realistic model of BNNs, where the connection topology of
neurons has recurrencies, i.e. cycles. By allowing cycles,
the RNN becomes a dynamic system with a self-sustained
temporal activation and possesses memory of previous in-
puts, i.e. the activation state of the network is a function of
previous activation states. Such property is known as ”echo
state” (Jaeger, 2003). Artificial RNNs are far more pow-
erful than feed-forward ANNs but they are also far more
difficult to train, because learning gradients dissipate over

Figure 1: Schematic overview of reservoir computing sys-
tem. The reservoir itself can be any medium with desired
properties, e.g. a biological neural culture or a artificial re-
current neural network. Adapted from (Schrauwen et al.,
2007).

time (making it difficult to learn long-range memory depen-
dencies) and network dynamics can lead to bifurcations. It
has recently been suggested that both artificial and biologi-
cal RNNs may be considered as a high-dimensional medium
of dynamics with the ability to represent information in a
high-dimensional and discriminating space. As such, the
RNN can be treated as an ”untrained” reservoir of dynam-
ics and only a single linear readout layer is therefore needed
for training. Figure 1 shows a schematic representation of
a reservoir computing system. The figure is adapted to the
use of an in-vitro neuronal culture as reservoir. W repre-
sent the trainable weights. Wbias, Wres and Wfeedback are
used to influence the structure and dynamics of the emerg-
ing neural network. These three are signals that can be used
to influence the development of the morphological structure
and behavior. As such, it is a true (DS)2 architecture.

Different substrates have been shown to possess the nec-
essary rich dynamics to act as reservoirs. In Jaeger (2003),
use echo state networks and in Maass et al. (2002) liq-
uid state machines are introduced. In Nikolić et al. (2006)
the primary visual cortex of anesthetized cats was investi-
gated. Fernando and Sojakka (2003) implemented a reser-
voir in a bucket of water. In Nichele and Gundersen (2017);
Nichele and Molund (2017) the use of cellular automata as
reservoir is presented. An optoelectronic reservoir is de-
scribed in Larger et al. (2012) and carbon-nanotube mate-
rials are evolved into reservoirs in Dale et al. (2016). Me-
chanical systems have also been used as reservoirs (Hauser
et al., 2011, 2012). Recently, dissociated neuronal cultures
have been investigated as a reservoir of dynamics (Takahashi
et al., 2016).

In order to harness the innate computational power of the
biological reservoir, the challenge becomes finding trans-
forms from the input to the reservoir and interpreting the
resulting behavior.



Proof-of-principle of embodied bio-robotic studies
Several studies have reported the ability and potential
of developing hybrid bio-robotic systems utilizing Micro-
Electrode Array-interfaced in-vitro neural networks: (War-
wick et al., 2011; Xydas et al., 2008; Warwick et al., 2010)
re-embodied dissected neurons from the brains of embryonic
rats through a robotic body. DeMarse et al. (2001); DeMarse
and Dockendorf (2005) created a neural interface to a simu-
lated ”animat” as well as a neural flight controller. Bakkum
et al. (2007) created a neurally controlled robotic drawing
arm. Li et al. (2015) have investigated hierarchical dissoci-
ated neural networks in a closed-loop robotic system. Novel-
lino et al. (2007) developed a real-time neurorobotic system
with a Khepera robot. Massobrio et al. (2015); Tessadori
et al. (2012), also attempted a closed-loop system based on
rat hippocampal neurons. Pizzi et al. (2009) performed post-
processing using an artificial neural network of recordings
from live neuronal cultures, while Takahashi et al. (2016)
suggested the usage of dissociated neural cultures as reser-
voir of dynamics.

Notwithstanding that the above results are preliminary,
these studies clearly demonstrate that it is indeed possi-
ble to establish self-organizing hierarchical neural networks
on MEAs, interface them with a computer, and study their
spontaneous neural network activity as well as their re-
sponses to electrochemical modulation longitudinally in-
vitro. However, these studies have yet to display explicit
learning within the networks other than the adaptive behav-
ior caused by the networks intrinsic plasticity. Yet, this re-
ported ”learning by habit” (Warwick et al., 2011) behavior
is a vital and fundamental step in getting there.

Recording extracellular activity of neural networks
A particular property of neurons is their ability to set up a
potential difference between the inside and the outside of
their cell membrane. This potential difference is set up by
the interplay of diffusion, ion channels and active ion pumps.
This cross-membrane potential essentially prepares the neu-
ron for a ’spike’ of electrical activity; a rapid polarity shift
(seen as a voltage spike) across the membrane. These spikes
may be triggered via electrical or chemical synaptic input
from upstream neurons, or by electrical or chemical manip-
ulation of the extracellular environment. During the spike,
this polarity change propagates along the neurons axon, a
long tendril that can extend to close and far away neurons,
causing similar polarity changes, and possibly spikes, in the
downstream neurons.

It is this electrical property of neurons one can take advan-
tage of in order to record and stimulate a network of neurons
by use of an MEA. By growing a dissociated neural network
on top of the MEA, it is possible to monitor the extracellu-
lar voltage fluctuations that occur in the network in relation
to an on-board reference electrode (ground). In addition,
one may also stimulate the network by injecting a current

through one or several of the MEAs electrodes. This current
causes a shift to the cross-membrane potentials of nearby
neurons which, if the stimulation is sufficiently strong, may
result in these neurons spiking.

Even though these networks communicate in a com-
plex interplay between both neurotransmitters and electrical
spikes, there is a high degree of correlation between the elec-
trical and chemical signals in these neural networks. Thus,
a necessary simplification of considering only the electrical
signals when interacting with neural networks can be made
at a small cost of information loss.

Embodied Intelligence
Does the brain control the way the body behaves or does the
body shapes the functioning of the brain? The body/brain
issue is a kind of chicken and egg problem (Funes and Pol-
lack, 1999). The course of natural evolution shows a his-
tory of body, nervous system, and environment all evolving
simultaneously in response to each other (Pfeifer and Bon-
gard, 2006).

In humans, aspects of the human cognition are shaped
by aspects of the body (beyond the brain). Intelligence
and cognition include high level mental constructs (concepts
and categories) and human performance on various cogni-
tive tasks (reasoning and judgment). Among the aspects
of the body that influence cognition are the motor system,
the perceptual system, and the bodys interaction with the
environment. In Bongard et al. (2006), a robot infers his
own body morphology and creates compensatory behavior
in case of failure of some body parts. This may be con-
sidered an early development of cognition. In Anetsberger
and Bongard (2016) the symbol grounding problem in sim-
ulated robots is investigated, by association to physical per-
ceptions. Embodying an in-vitro neural network with a body
in a closed-loop system may thus enable testing hypotheses
on behavior and cognition, as well as provide insight into
the nature of intelligence.

Experimental Setup
In this section, the experimental setup for two sets of ex-
periments is presented. The first part (section Neural inter-
face: MEA2100 and In Vitro Neural Network Culture Setup)
deals with setting up the neural interface and describes the
techniques utilized in order to grow the target neural net-
works. The second part (sections Distributed infrastructure-
Reservoir Computing Setup) describes how these networks
have been implemented in an embodied closed-loop neuro-
robotic system.

Neural interface: MEA2100
To interface the neuronal cultures, we have utilized the
MEA2100 (MultiChannelSystems, 2017b) along with the
accompanying MEA Suite (MultiChannelSystems, 2017a)
software from Multichannel Systems. The specialized MEA
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Figure 2: (a) A generic MEA. (b) A MEA with a neuronal
culture. (c) Microscopic image of neuronal culture with vis-
ible structure formation.

comprises of a tissue culture dish incorporating bidirectional
electrodes allowing direct contact with the neuronal culture.
The standard system utilizes 60-electrode MEAs with an
internal reference electrode and titanium nitride recording
electrodes (MultiChannelSystems, 2017b). The system en-
ables acquisition and analysis of electrophysiological data
from the biological networks, as well as enables electrical
stimulation of the networks. Each electrode can detect the
extracellular activity of nearby neurons and can stimulate
activity as described in section Recording extracellular ac-
tivity of neural networks.

In Vitro Neural Network Culture Setup

The neural networks used consisted of motoneurons (MNs)
or dopaminergic (DA) neurons morphogenetically engi-
neered from induced pluripotent stem cells (iPSCs) through
controlled expression of patterning factors at specific time
points over a period of 30 days and 16 days, respectively,
allowing partial recapitulation of developmental processes.
The MEA and a neural culture are shown in Figure 2. The re-
sulting cells were confirmed as MNs or DA neurons by posi-
tive expression of approperiate molecular markers including
neuronal marker beta-III tubulin (Tuj-1), and Islet-1 or tyro-
sine hydrohylase, respectively. A total of 100,000 neurons
from each type were seeded separately, onto the centre of a
poly-L-ornithine (PLO)/laminin coated MEAs, and allowed
to further mature and were maintained for electrophysiolog-

ical recordings and stimulation.

Distributed infrastructure
To enable embodiment of the neuronal cultures, we need
a system which allows for real-time bidirectional commu-
nication between the culture and a robotic body. This has
been achieved by designing a closed-loop system where the
neural recordings serve as motor instructions to a simulated
robotic body, while sensory data from the robot is sent back
to the culture through appropriate stimulation. This sensory
feedback is essential in order to enable the network to learn
something about its environment. The implemented infras-
tructure essentially consists of a four node system as shown
in Figure 3. The three main components for real-time oper-
ation include:

• The Host server MEA: establishes an interface between
the MEA2100 (MultiChannelSystems, 2017b) and the
rest of the network. This server provides clients with real-
time MEA data and also performs MEA stimulation re-
quests.

• The Host server Robot: establishes the bi-directional in-
terface to the robotic body in which the biological net-
works are embodied.

• The Host server Interpretation: the workhorse of this
setup. This node is responsible for applying the necessary
data transformation algorithms and training protocols be-
tween the MEA and the robot.

In addition to these, a fourth important component is the
Storage database which logs all experimental data.

Reservoir Computing Setup
There are a number of possible ways in which one can trans-
form the signals between the MEA and the robot. Previous
experiments have often decoded the MEA output by meth-
ods such as feature mapping through spike pattern cluster-
ing (DeMarse et al., 2001) and machine learning techniques

Figure 3: Distributed infrastructure. The FPGA, supercom-
puter, are to illustrate future expandability but have not been
used in the current setup.



(Warwick et al., 2010, 2011), and/or by utilizing the net-
work’s intrinsic stimulation response (Novellino et al., 2007;
Bakkum et al., 2007) and assigning these responses to motor
behaviors. Here, we propose a novel approach using reser-
voir computing in order to take advantage of the neural net-
work’s complex non-linear dynamics.

The reservoir computing system that has been designed,
is shown in Figure 4. This conceptual model shows the neu-
ronal culture acting as a reservoir interfaced with a computer
acting as a bridge between the reservoir and a robot. In or-
der to bridge the neural reservoir and the robot, the computer
is responsible for processing and filtering electrical readouts
from the neuronal reservoir, mapping them to actions to be
performed by the robot, and serving as an output layer for
the reservoir. Likewise, sensory data from the robot must
be mapped into stimuli that can be applied to the neuronal
reservoir, serving as the input layer for the reservoir. By
using this setup, the behavior of the closed-loop system can
be altered by changing the input and output layers, foregoing
the need to directly influence the growth of the neuronal cul-
ture. In our implementation, a simple single-layer artificial
feed-forward network has been chosen as output layer, while
a simple transform between sensory data (e.g. the robot dis-
tance to wall in a wall avoidance task) and period of stimuli
on an electrode serves as the input layer. The choice of a
feed-forward ANN is motivated by ease of implementation,
not by any similarity to the real neurons. This choice al-
lows for using a non-linear filter during the proof-of-concept
phase, while retaining the possibility of reducing the net-
work to a linear classifier in the form of a perceptron with
no other changes.

Embodiment of Reservoir Computing System
We have currently embodied the neuronal culture through a
simulated body. Through providing the biological networks
sensory feedback in the form of extracellular stimulation,
as well as converting network activity into robotic motor

Figure 4: The proposed architecture for a cyborg using neu-
ronal cultures as a reservoir. The readout layer can be any
linear single-layer trained network or a multi-layer network,
in case of more complex or multiple tasks.

Figure 5: A simulated agent.

behavior, we enable a closed-loop system inspired by the
sensory-motor loop vital for animal perception and move-
ment. A simulated robot, or virtual creature (DeMarse et al.
(2001) coined the term Animat) provides an easy and safe
setup for testing the distributed neuro-robotic system and al-
lows for the environment to be simplified. The animat here,
consists of a body with four eyes and two motors, allowing
it to sense the environment in a cone and steer either left or
right. The environment that the animat inhabits is a small
box with no features other than the four enclosing walls. In
this very simple environment the animat can be trained to
perform simple tasks such as wall avoidance, or skirting the
walls without getting too close or too far.

Agent Bot and Objective As a proof-of-concept, the ani-
mat is subjected to tasks that are trivial to solve with existing
computers. The chosen task is using sight in order to avoid
collision with a wall, which is a fairly simple task where per-
formance can be easily quantified. To gauge animat perfor-
mance, the animat faces a series of trials where it is placed
close to a wall at different angles and points are awarded
for total distance between the agent and the wall with zero
points offered for a collision. With this setup, multiple an-
imats can be created and measured against each other to
search for a configuration that best solves the task presented.
This is possible because we define an animat not only as a
neuronal culture, but by its input and output layer. By this
logic two animats differ as long as either their input or out-
put layer is different, even though they are both powered by
the same neuronal culture. However, in order to reduce the
search space however the output layer has been fixed as a
linear function of the agents distance to the wall seeing as
the system should be more than powerful enough to com-
pensate for a suboptimal output layer. Much like the choice
of filters, the training algorithm can easily be swapped. In
the current system only a simple genetic algorithm has been
utilized, again arbitrarily chosen due to ease of implementa-
tion.

Results and Analysis
This section presents the results for the two main experi-
ments: I) recording of spontaneous activity and responses
under stimulation, which constitutes a stepping stone to-
wards the closed-loop system used in II) agent control.



Spontaneous Activity and Stimulation Responses
A biological neural network was developed to act as a dy-
namic reservoir for the artificial neural network. The devel-
opment of the neural network was gradual with three dis-
crete phases. After seeding, the culture showed the follow-
ing development of activity: Spontaneous tonic firing oc-
curred after 20 days in vitro (DIV), brief bursts after 28
DIV, pacemaker burst at 40 DIV (See Figures 6, 7 and 8
respectively). Pacemaker bursts were able to drive activity
throughout the culture and had a single point of origin. The
burst propagation from the pacemaker cluster spread to the
majority of the cluster, with an increasing number of nodes
responding as the culture matured. Pacemaker activity was
therefore chosen as a target for stimulation, with timing and
signal strength allowing pinpointing of pacemaker origin.
Pacemaker bursts were originally disordered with no clear
timing to predict their arrival. To test the learning potential
of the culture, we attempted stimulation to alter the timing
of the pacemaker.

A simple biphasic pulse of -/+ 500 mV was chosen as the
stimulus, with the pacemaker cluster as the stimulation tar-
get. Timing was set at 30 second intervals, with responses
to stimulation gathered from nodes downstream of the pace-
maker. Stimulation occurred for 10 minutes daily. Stim-
ulation altered the pacemaker timing during the first day,
however the timing became disordered once stimulation was
disconnected. However, after 5 sessions of stimulation, the
pacemaker maintained the 30 second interval in the absence
of stimulation, suggestive of long term potentiation (LPT).

This timing later became disorganized with bursts occur-
ring at 1-2 minute intervals. The cause of this is unknown
as the stimulation would sometimes restart the 30 second
timing, but only for brief periods. It is possible that as the
culture is still undergoing significant proliferation and de-
velopment, the network is too dynamic to impact long term.
Indicative of this is the duration of pacemaker bursts, with
burst trains changing from 1 second duration during the sec-
ond month to 2-3 minutes during the forth. Secondly, the
stimulation is not synchronized with the network activity
and is instead enforced without regard to network state. As
computational modeling is established, this synchronization
will be among the initial goals to improve stimulation proto-
cols. Despite the disorganized timing, pacemaker bursts are
still present after 200 DIV.

In addition to electrical stimulation, chemical stimulation
of the DA neurons utilizing dopamine was attempted in three
instances. Upon testing, the DA culture responded vigor-
ously to chemical stimulation by direct dopamine addition
to the culture medium. All together 3,5M of dopamine was
added to the culture at 32 DIV. After stimulation the cul-
ture was supplied with fresh media. During the second and
third stimulation, at 37 DIV and 50 DIV, respectively, 3M
of dopamine was added to the culture medium. The effect
of dopamine addition was primarily enhancement of the fir-

Figure 6: A recording of a tonic spike train in the DA cul-
ture, represented within MC Suite.

Figure 7: A recording of a simple burst in the DA culture,
represented within MC Suite.

Figure 8: A recording of complex pacemaker bursts in the
DA culture, represented within MC Suite.

ing strength, bringing tonic firing from 40-50 mV to 80-100
mV depending on the electrode and experiment. Little to no
effect was seen on the burst duration and timing.

The experiments herein provide a proof-of-concept of
recording neural activity as well as stimulation protocols,
which are a requisite for the following experiment.

Agent performance
In the current iteration the agent is not able to achieve so-
phisticated behavior, but quickly converges towards run-
ning in circles. Although the agent currently fails to dis-
play more complex and interesting behavior, the stated goal
of achieving a closed-loop system, showing that it is fea-



sible to control an agent in real time over network proto-
cols, has been successfully achieved. A video of the real-
time agent behavior powered by the neural culture using
a reservoir-computing setting is available at the following
link: https://youtu.be/NcF0Uc-YqF8. This represents a step-
ping stone for further investigation of complex adaptive be-
haviors of the embodied agent.

Conclusion
In this paper we have presented a novel closed-loop hybrid
neuro-system which uses in-vitro neural networks as a reser-
voir of dynamics. The activity of biological neural networks
has been recorded with and without stimulation, and a proof-
of-concept of training properties has been provided. In ad-
dition, the neuronal culture has been embodied to provide
sensory information as stimulation to the biological neural
network through an MEA. This work lays the foundation for
further studies within neuroscience, computer science and
cybernetics, in a long-term endeavor towards a better under-
standing of the brain ”language” and ”functions”. Directions
for future work are discussed in the following section.

Future Work
Structuring the biological neural networks.
Apart from arrays utilizing self-organizing hierarchical neu-
ral networks in standard MEAs, future work will also in-
clude the study of equivalent networks within microflu-
idics devices with embedded microarchitecture, developed
in-house. These microchips contain multiple cell compart-
ments (nodes) interconnected through microtunnels permis-
sible only to neuronal axons.

The microfluidics microchips, made with polydimethyl-
siloxane (PDMS), are gas-permeable and biocompatible and
thus enable the establishment of in-vitro biointerfaces sus-
tainable at standard cell culture conditions (Whitesides,
2006; Halldorsson et al., 2015). Furthermore, by incorpo-
rating a microelectrode interface, the microchips become
compatible with the M2100 system, allowing for electro-
physiological recording of neural network activity as well
as electrochemical stimulation (Pan et al., 2015). Thus, the
PDMS microarchitecture enables selective electrical stimu-
lation and recording of isolated nodes, while it also facili-
tates signal propagation to other nodes via the interconnect-
ing axons.

Currently, a recently-developed multi-nodal microfluidic
chip is being established. Pilot studies are focused on proto-
col optimization, especially in terms of scaling neuronal cul-
ture and imaging parameters. In the near future, electrodes
will be integrated into the surface of this chip to finalize the
first version of the interface.

Physical robot: Cyborg interactive robot
As part of creating a cyborg, the Cyborg project is currently
developing an interactive robot which will in the future serve

as the a body for embodying the biological networks. In
conjunction with this, a Pioneer LX(MobileRobots, 2017b)
navigation base, developed by Omron Adept MobileR-
obots(MobileRobots, 2017a), has been purchased. On top
of this base, we are developing necessary hardware and soft-
ware to meet this goal of an interactive physical cyborg.

Computational complexity of neuronal cultures
reservoir
Being able to embody a neuronal culture through a reser-
voir computing paradigm is a stepping stone towards a bet-
ter understanding of the computational capabilities and self-
organizing dynamics of neurons. The developed closed-loop
system will serve as multi-disciplinary platform to study and
elucidate the underlying mechanisms of memory and learn-
ing in biological neural networks, as well as hypothesis on
concepts formation and emergence through local interac-
tions.
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