
1

Introduction to C

TDT4258 Energy Efficient Computer Design Lab

Stefano Nichele

Department of Computer and Information Science

2013, February 15th

Stefano Nichele, 2013

2

Plan
• Basics:

– The first program

– Operators and flow control

– Variables and datatypes

• Arrays and pointers

– Arrays

– Pointers

– Array pointers and vice versa

– Strings

• Functions

– Declaration

– Main

• Miscellaneous

– Preprocessor

– Header files

– Standard library

3

The first program

The only way to learn a new programming language is

by writing programs in it. The first program to write is

the same for all languages:

Print the words

 hello, world

 Kernighan & Ritchie

4

The first program

#include <stdio.h>

int main(void)

{

printf("hello, world\n");

return 0;

}

Compile and run:

$ gcc -o hello hello.c

$./hello

hello, world

5

Separate compilation

6

Operators

• Arithmetical, logical, assignement and comparison

operators:
– Bitwise operators:

& AND

| OR

^ XOR

<< left shift

>> right shift

~ negation

7

Flow control

• Same as Java

– for

– while

– do while

– if / else

– switch

8

Data types

• Basic data types: char, int, float, double

• Variants: short / long, signed / unsigned

• Example:
short int

unsigned char

unsigned long int

• Boolean values: use int (0 false, 1 true)

• Strings: use array of char that ends with ’\0’

9

Modifications

• const: constan, value cannot be changed

• static (in function): the variable retain its value

between each time the function is called

• static (on a global variable): the variable is local to

the c file where it is declared

• extern: the declaration of the variable is in another file

• volatile: specifies that the variable should not be

optimized

10

Struct and typedef

struct foobar {

int a;

double b;

char c;

};

struct foobar f1;

f.a = 5;

typedef struct foobar foobar_t;

foobar_t f2;

11

Arrays

• Arrays have a constant size

• The limits of the array are not checked automatically

• Example
int tab[5];

tab[0] = 7;

tab[4] = 8;

tab[5] = 9; /* error, but legal */

12

Pointers

• Pointer: a variable that contains a memory address

• Declare the type of variable that has to be pointed

and an asterisk (*)

• & operator gives the address of the variable

• * operator dereferences a pointer (provides the

content of the memory location it points to)

• void pointers can point to anything

13

Pointers - example

int a = 15;

int b = 24;

int *p1 = &a; /* p1 points to a */

int *p2 = &b; /* p2 points to b */

*p1 = *p2 + 1; /* equivalent to a = b + 1 */

p2 = p1; /* now pointer p2 also points to a */

14

Pointers – a realistic example

void swap(int *a, int *b)

{

int t = *a;

*a = *b;

*b = t;

}

15

Pointers - arithmetic

• You can get a new pointer by adding a pointer to an

integer

• Example:

 int tab[10];

 int *p = &tab[0]; /* pointer to the first element */

 p = p + 3; /* now p points to tab[3] */

 (p - 1) = 42; / we set the value of tab[2] */

• Note that p+3 not necessarly increases the address

by 3, but with 3s, where s is the size of an int

16

Array pointers and vice versa

• An array variable is really just a pointer to the first

element in the array

int tab[10];

(tab+3) = 5; / same as tab[3] = 5 */

int *p = &tab[0];

p[3] = 7; /* same as *(p+3) = 7 */

17

Strings

• A text string is represented as an array of char values

• Ends with the magic value `\0`

• Test in double quote is automatically filled in the

array:

 char astr[] = "hello"; /* astr has length 6 */

18

Strings – example

/*

* Calculatea the length of the string

* (without '\0’)

*/

int strlen(char *str)

{

int n = 0;

while (str[n] != '\0')

n++;

return n;

}

19

Return type and parameters

• Same as Java

• Use (void) as a parameter if the function should not

take arguments

20

Prototypes

• A function cannot be called before it is declared

• Prototype: specifies just the name, return type and

parameters, not the code

 void swap(int *a, int *b);

21

Main

• int main(int argc, char **argv)

• Returns 0 if everything goes well

• argc: number of command line arguments

• argv: the command line arguments

22

Main - example

/*

* Program that writes

* the command line arguments

*/

#include <stdio.h>

int main(int argc, char **argv)

{

int i;

printf("%d arguments\n", argc);

for (i = 0; i < argc; i++)

printf("%d: %s\n", i, argv[i]);

return 0;

}

23

Preprocessing

• A separate step before the actual compilation

• Make simple modifications in the source code

• The most important directives are #define and

#include

24

#define

• Defines a constant or a macro

• Example
– #define ANSWER 42

– #define sq(x) ((x)*(x))

• Proprocessing now replaces all the occurrences of

ANSWER with 42 and sq(x) with (x)*(x) (for all x)

• Example:

• From sq(ANSWER+1) to ((42+1)*(42+1))

25

#include

• Includes a file

#include <filename>: System files

(example: #include <stdio.h>)

#include ”filename": Local file

(example #include "foobar.h”)

26

Header files

• They contain function prototypes, struct, definitions,

preprocessing directives, external declarations

• They do not contain variable definitions and functions

(the code)

27

Standard library

• Some useful libraries:
– #stdio.h: printf, scanf, file I/O

– #string.h: string functions, copy, comparison

– #math.h: trigonometric functions, logarithm etc.

• Every standard library has its onw man-page in

section 3, for example man 3 printf

