
1

Tutorial Lecture for Exercise 1

TDT4258 Energy Efficient Computer Systems

Stefano Nichele

Department of Computer and Information Science

2013, January 25th

Stefano Nichele, 2013

2

Practical Information

• Read the booklet (you can find it on the course wiki)

• Exercises:
– Exercise 1: AVR32 Assembly. Buttons and LEDs.

– Exercise 2: C on the AVR32. Sound.

– Exercise 3: Linux on AVR32. Game.

• STK1000: be kind to our cards
– Static electricity

– Mechanical stress

• The Lab is available outside the scheduled lab hours

3

Practical Information

• Submission on It’s Learning

• Email to the assistant in case of emergency

• The report should be
– in English

– in PDF format

• Remember that the exercises are graded and

copying is like cheating

4

Exercise 1

• Create a program that turns on the central LED and

moves the light to the right or to the left depending on

the pushed button (button 0: right, button 2: left)

5

Requirements

• To be written in assembly language

• The buttons should be read in an interrupt routine

• The LEDs are updated in the main loop of the

program

• You should use the GNU tools
– GNU Assembler (GAS) and GNU Linker (LD)

– Use the makefile

– Debug with GDB

6

AVR32 and STK1000

• AVR32: 32-bit processor architecture, RISC load/store

• AT32AP7000: microcontroller with AVR32 processor

• STK1000: Development board with AT32AP7000

7

System overview

8

AVR32

• 32 bit

• Registry: 16 registers
– 13 general: r0 – r12

– Link Register: lr

– Stack Pointer: sp

– Program Counter: pc

• Many system registers, including:
– Status register

– EVBA

9

STK1000

10

JTAGICE mkll

11

Upload to STK1000

• To upload a program to STK1000 via JTAGICE use

the following command:
– Avr32program halt

– Avr32program program –e –f0,8Mb <programfile>

12

AVR32 assembler

• Instructions <instruction name> <arguments>

 mov r1,r0

• Comments /* This is a comment */

• Several types of symbols:
– <symbolname> = <value> NINJA = 0xBEEF

– <symbolname> : <instruction> loop: sub r0,1

 brne loop

13

AVR32 assembler

• Arithmetic: ADD, SUB etc.

 ADD r1,r4 set r1 = r1 + r4

• Memory access: LD.size. ST.size

 LD.W r0,r1 download a word (32-bit) from the

memory address located in r1 into r0

• Jump: BRcondition

 BREQ jumptarget jump to the target if the Z flag is set

14

AVR32 assembler

• Pseudo instructions:

 .include ”filename”

 .globl symbol

 .text

 .data

15

Segments

• Machine code is divided into segments
– text program code, cannot be modified

– data variables

• Pseudo instructions .text or .data indicate the

segment for the subseqent code

16

Setup of assembler file

/* explicitly set the symbols */

.text

.globl _start

_start:

/* program code */

.data

/* data areas*/

17

Parallel I/O: PIO

• I/O-controller: internally on the microcontroller
– Controls the I/O pins of the microcontroller

– General I/O pin:

• Either input or output

• Input: the program can read the value of I/O pin

• Output: the program can set the value to I/O pin (low or high)

18

Configuration of PIO

• The microcontroller has memory mapped I/O:
– Each I/O controller has a set of registers, each register is mapped

on a specific address in the processor’s address space

– I/O controllers are controlled / programmed by writing to these

registers

• There are 5 PIO ports, port A-E
– Five sets of memory mapped registers

• Each PIO port has 32 bits
– 32 I/O pins per PIO port

– Each register has 32 bits, each bit corresponds to a given I/O pin

on the microcontroller

19

PIO registers

Memory map

Register address:

base address + offset

PIO B,PUER:

0xffe02c00

+

0x64

=

0xffe02c64

20

GPIO on STK1000

• A selection of I/O pins goes to the GPIO connector

• Flat cables can connet GPIO to anything

• 1st Exercise: LEDs and buttons

21

PIO example: the use of buttons

• Connect buttons phisically to GPIO bus with flat cable

• Example: connect to GPIO 0-7 corresponding to PIO

B pins 0-7

• In the program:
– Enable I/O pins

• Set bits 0-7 of register PIOB PER

– Enable pull-up resistors

• Set bits 0-7 of register PIOB PUER

– To read the button status:

• Read bits 0-7 of register PIOB PDSR

22

PIO example: the use of LEDs

• Connect LEDs phisically to GPIO bus with flat cable

• Example: connect to GPIO 16-23 corresponding to

PIO C pins 0-7

• In the program:
– Enable I/O pins

• Set bits 0-7 of register PIOC PER

– Setting the I/O pins to be outputs

• Set bits 0-7 of register PIOC OER

– To turn off the LEDs

• Set bits 0-7 of register PIOC CODR

– To turn on the LEDs

• Read bits 0-7 of register PIOC SODR

23

Interrupt

• Instead of polling I/O devices

• I/O units provide information when they want

attention

• CPU saves the state of its parts and jumps to an

interrupt routine

• Jumps back when the interrupt routine is completed

24

Interrupts on AVR32

• Four general interrupt lines

• Need many more

• Solved by having a separate

 interrupt controller INTC

25

Interrupt controller INTC

• Up to 64 groups of interrupts with up to 32 interrupt

requests in each group

• Provides a maximum of 64*32 interrupts to the INTC

• It is hard connected

• Each group can be configured with
– Autovector

– Interrupt priority

26

Interrupt handling

• In case of interrupt: jump to interrupt routine

• The address of the interrupt routine is calculated as

follows:
– Interrupt routine address = EVBA | autovector

• EVBA: system register (Exception Vector Base

Address, 32 bit)

• Autovector: offset from EVBA which AVR32 provides

to INTC (14 bit)

27

Interrupt example

• Set up PIO B to provide interrupts
– Program the interrupt routine

– Set up PIO B to provide interrupts

• Turn on the interrupts: register PIOB IER

• Turn off the interrupts: register PIOB IDR

– Determine and set EVBA

• mtsr 4, r1

– Calculate autovector and write to INTC the registry IPR14

– Turn on the interrupts (delete the GM bit in the status register)

• csrf 16

28

GNU tools

• From source code to executable programs

 (GCC) -> AS -> LD

• Automate with make

• Debugging: GDB

• Editor: Emacs (voluntary, well-integrated with GDB)

29

Assembling and linking

$ avr32-as -gstabs -o <objektfil> <assemblyfil>

$ avr32-ld -o <programfil> -l<bibliotek> <objektfiler>

Example:

$ avr32-as -gstabs -o foobar.o foobar.s

$ avr32-ld -o foobar.elf -lm foobar.o

30

make and Makefile

• Makefile contains commands to build the application

• Make reads the Makefile and performs the necessary

commands

31

Example of Makefile

AS = avr32-as

ASFLAGS = -gstabs

LD = avr32-ld

link: create ELF object files

eksempel.elf: eksempel.o

$(LD) eksempel.o -o eksempel.elf

assembly: create object files from assembler files

eksempel.o: eksempel.s

$(AS) $(ASFLAGS) -o eksempel.o eksempel.s

remove all auto generated files

.PHONY: clean

clean:

rm -rf *.o *.elf

32

GDB

• GDB: the GNU debugger

• Debug from PC via JTAGICE

• avr32gdbproxy -f 0,8Mb -a remote:1024
– Start the proxy

• avr32-gdb <elf-programfile>
– Start the GDB

33

GDB commands

target remote:1024 Connecting to the proxy

break <line number> Set a break point

run Run the program

bt Trace back

si Perform an instruction

c Continue running

regs Show registry content

help Help

34

Emacs

• Key combinations: C=Ctrl, M=Alt

• Tutorial: C-h t (press Ctrl-h release, then press t)

• Some useful commands:
– Open file: C-x C-f (find-file)

– Save file: C-x C-s (save-buffer)

– Exit: C-x C-c (save-buffers-kill-emacs)

– Highlight text: C-<SPACE> (set-mark-command)

– Cut selected test: C-w (kill-region)

– Paste: C-y (yank)

– Run an arbitrary command: M-x (execute-extended-command)

35

GDB in emacs

• Run the command gdb (M-x gdb RET)

• Enter a correct GDB command line

• GDB shows up as a separate buffer in Emacs

• GDB-one is connected to the source code buffer
– Can set the break point directly in the source code: Cx <SPACE>

– When GDB stops at a break point the line is highlighted in the

source file

36

Help

• Where to find answers to all your wonder?
– Excercise booklet

– Documentation for the AVR32 and ATP32AP7000

 (see course wiki or atmel.com)

– The GNU tools: man-pages

– google

– Und.ass

37

Recommended actions

• Start ASAP

• Read the exercise booklet carefully

• Run the given code on the test card, make small

changes and run the new one

• Try to control the LEDs

• Write the program without interrupts

• Add the interrupt handling

38

Lykke til

Where is the lab?

You can follow me now and I will show you!

