
1

Tutorial Lecture for Exercise 3

TDT4258 Energy Efficient Computer Systems

Stefano Nichele

Department of Computer and Information Science

2013, March 15th

Stefano Nichele, 2013

2

Exercise 2

• Deadline: today kl. 12:00 – It’s Learning

• (Brief) presentation to vit.ass (only selected groups).

The presentations will be held in the lab.

 When?

3

Exercise 3

• Deadline: Friday 26th April, on It’s Learning

Lab hours with assistance:

Week 12-13: Ekskursjon – Påskeferie

Week 14: Thursday - Friday

Week 15: Monday - Tuesday

Week 16: Monday - Tuesday

Week 17: Monday - Tuesday

4

Exercise 3

1. Write a Linux driver for the use of buttons and LEDs

on the STK1000
– Device driver: software layer between the applications and the actual device

• they hide the details of how the device works

• they make a particular piece of hardware respond to a well defined programming

interface

• can be built separately from the rest of the kernel and ”plugged in” when needed

2. Create a game (The Scorched Land Defence)

 that runs under Linux on STK1000

5

The Scorched Land Defence

Use your creativity

Create a very simple version of the game

No specific requirements on the implementation

6

Task requirements

• To be written in C language

• The game should run under Linux on STK1000

• Write your own drivers for buttons and LEDs

• Use existing drivers for sound card and LCD monitor

7

LINUX on STK1000

• Use SD card as ”hard disk”

• Linux kernel and file system on SD card

• Bootloader (u-boot) on the microcontroller

8

Communication with STK1000/Linux

• Serial
– Cable between PC and STK1000 UART_A

– Run minicom –o on your PC

• Network
– Find the IP address of STK1000 (eg. With ifconfig)

– telnet ip-address

9

IO devices in Linux

• IO devices are represented by special files in /dev

directory

• To make the I/O
– Open (with the system call open) the file that represents the device

to use

– Execute ioctl call, if necessary

– Read/write with read / write using lseek to switch position

– Close the file (close)

• System calls are documented in man pages

 (e.g. man 2 open)

10

Compiling for AVR32-Linux

• Compiling takes place as before, except that we use

programs with the prefix AVR32-linux- intead of avr32-

• Avr32-linux-gcc, avr32-linux-gdb, etc.

11

Compiling new kernel

• Source code published on the course page

• make xconfig or make menuconfig (can be omitted)

• make

• Compiled core in arch/avr32/boot/images/uImage,

can be copied to /uImage on the SD card
– A complete file-system for the SD card is also given (on the course

page)

12

Screen

• Uses framebuffer, /dev/fb0

• Data is written to /dev/fb0 ports on LCD screen

• Format:
– 32 bit per pixel, 8 bit per color

– The first row at the top

– 320x240

• Can use mmap system call to display the screen to a

table in memory

13

Audio

• Write audio data to /dev/dsp

• Standard setup
– One channel

– 8bit per sample

– Sample rate 8000Hz

• Can change setup with ioctl

14

Kernel modules

• The drivers should be created as kernel modules

• The driver should be the only part of the system that

has direct access to the relevant PIO registers

• For common programs, LEDs and buttons are

available via /dev/foobar

15

Creating drivers

• 1st source of information: Linux Device Drivers

(essential section 1-3 and 9)

• Compile kernel

• Write driver

• Compile the driver as a kernel module (ends up with

foobar.ko)

• Boot up the kernel you compiled and load module

• Create a device file for the driver

16

Limits

• Standard library is not available

• I.e. No printf

• Linux kernel version: printk

• Printk(KERN_INFO ”i = %d\n”, i);

• Printk(KERN_ALERT ”Minor damage\n”);

• dmesg (”display message” or ”driver message”,

command that prints the message buffer of the

kernel)

17

Startup and shutdown of the module

• Create functions (interface between kernel and module):
– static int __init foobar_init(void); //allocate, initialize

– static int __exit foobar_exit(void); //deallocate

• Register it with:
– module_init(foobar_init);

– module_exit(foobar_exit);

• Init function is called when the module is loaded and exit

function when it is removed

18

Major and minor number

• Device-files and drivers are connected together with

two numbers called major and minor numbers

• Roughly: major identifies the driver (ie device type)

and minor the specific device

• (Use alloc_chrdev_region to receive the major

number, major and minor are used when creating a

device-file)

• In /dev try ls -l

19

File functions

• The driver contains implementations of file functions:

– static int foobar_open(struct inode *inode, struct file *filp);

– static int foobar_release(struct inode *inode, struct file *filp);

– static ssize_t foobar_read(struct file *filp, char __user *buff, ssize_t

count, loff_t *offp);

– etc. (for example write, seek, ioctl...)

20

Register file functions

• Create a struct file_operations which has links to

functions:
static struct file_operations foobar_fops = {

 .owner = THIS_MODULE,

 .open = foobar_open,

 .release = foobar_release,

 .read = foobar_read, // etc.

}

• Call cdev_init with the structure as argument (to tell

the kernel how to use those functions)

21

Use of hardware (I/O ports)

• Need to request for access to hardware with

request_region

• Otherwise, use the I/O ports in the same way as in

exercise 2

• release_region when done

22

Compiling the kernel module

• Must have Linux source code available

• Use Linux build system with a small dose of magic

• See makefile

23

Loading and removal of the module

• Loading: insmod foobar.ko

• Removal: rmmod foobar

• List of loaded modules: lsmod

24

Create a device file

• Find major number in /proc/devices

• mknod /dev/foobar c major minor

• ls –l /dev/foobar shows the major and minor number

25

Tips

• Start early. Biggest exercise this year.

• Play with u_boot to obtain the unique MAC-address

of the card

• (If you want to use threads, build with –pthread flag)

• Make a simple ”hello world” module

26

Lykke til

