

Recap TDT4258 Microcontroller System Design Lab

Stefano Nichele Department of Computer and Information Science 2011, April 5th

www.ntnu.edu

Exercise 3 – pong game

- Deadline: April, 7th kl. 20.00 It's Learning
- 1 report + code each group
- (Brief) presentation to vit.ass the week after submission (only selected groups). The presentations will be held in the lab.

Exercises objectives

- Microcontroller programming (C and assembler)
- I/O programming
- Interrupts
- Programming on Linux Kernel
 - Create your own hardware driver
- Development using GNU tools

STK1000 dev. board: why?

www.ntnu.edu

AVR32 vs. AT32AP7000

- AT32AP7000 microcontroller:
 - AVR32-based microcontroller (32-bit RISC processor from Atmel)
 - Many built-in I/O devices:
 - General I/O pins (buttons, LEDs)
 - DAC (audio)
- AVR32 microprocessor:
 - Registry: 16 registers
 - 13 general: r0 r12
 - Link Register (Ir), Stack Pointer (sp), Program Counter (pc)
 - Many system registers, including:
 - Status register
 - EVBA

1st Exercise

- Assembly (based on load/store)
- I/O (buttons & leds)
- Memory mapped
- Interrupt (routine)

Parallel I/O: PIO

- I/O-controller: internally on the microcontroller
 - Controls the I/O pins of the microcontroller
 - General I/O pin:
 - Either input or output
- The microcontroller has memory mapped I/O:
 - Each I/O controller has a set of registers, each register is mapped on a specific address in the processor's address space
 - I/O controllers are controlled / programmed by writing to these registers

PIO

- 5 PIO ports, port A-E (5 sets of memory mapped registers)
- Each PIO port has 32 bits
 - 32 I/O pins per PIO port
 - Each register has 32 bits, each bit corresponds to a given I/O pin on the microcontroller

Interrupt

- Instead of polling I/O devices
- I/O units provide information when they want attention
- CPU saves the state of its parts and jumps to an interrupt routine
- Jumps back when the interrupt routine is completed

Exercise 2

- Produce sounds with built-in DAC
 - Use a clock to generate interrupts regularly
 - An interrupt routine is feeding the DAC with audio samples
- C language
 - High-level language with good low-level opportunities
 - Similar to Java not object oriented
 - Pointer (variable that holds memory addresses)

int a = 5;	// variable of type int
int *p;	// pointer to int
p = &a	// set p to point to a
*p = 42;	// modify the value pointed by p (dereference)

Exercise 3

1. Write a Linux driver (for the use of buttons & LEDs)

- Device driver: software layer between the applications and the actual device
 - they hide the details of how the device works
 - they make a particular piece of hardware respond to a well defined programming interface
 - can be built separately from the rest of the kernel and "plugged in" when needed

2. Pong game that runs under Linux on STK1000

IO devices in Linux

- IO devices are represented by special files in /dev directory
- To make the I/O
 - Open (with the system call open) the file that represents the device to use
 - Execute ioctl call, if necessary
 - Read/write with read / write using Iseek to switch position
 - Close the file (close)

Drivers

- The drivers should be created as kernel modules.
- The driver should be the only part of the system that has direct access to the relevant PIO registers

Examination plan

Exercise 1	20 %
Exercise 2	20 %
Exercise 3	20 %
Final Test	40 %

Total 100 %

LAST EFFORT!!

(Apr, 12th)

NTNU – Trondheim Norwegian University of Science and Technology

www.ntnu.edu