
1

Recap
TDT4258 Microcontroller System Design Lab

Stefano Nichele
Department of Computer and Information Science
2011, April 5th

Stefano Nichele, 2011

2

Exercise 3 – pong game

• Deadline: April, 7th kl. 20.00 – It’s Learning

• 1 report + code each group

• (Brief) presentation to vit.ass the week after
submission (only selected groups). The presentations
will be held in the lab.

3

Exercises objectives

• Microcontroller programming (C and assembler)
• I/O programming
• Interrupts
• Programming on Linux Kernel• Programming on Linux Kernel

– Create your own hardware driver

• Development using GNU tools

4

STK1000 dev. board: why?

5

AVR32 vs. AT32AP7000

• AT32AP7000 microcontroller:
– AVR32-based microcontroller (32-bit RISC processor from Atmel)
– Many built-in I/O devices:

• General I/O pins (buttons, LEDs)
• DAC (audio)• DAC (audio)

• AVR32 microprocessor:
– Registry: 16 registers

• 13 general: r0 – r12
• Link Register (lr), Stack Pointer (sp), Program Counter (pc)

– Many system registers, including:
• Status register
• EVBA

6

1st Exercise

• Assembly (based on load/store)
• I/O (buttons & leds)
• Memory mapped
• Interrupt (routine)• Interrupt (routine)

7

Parallel I/O: PIO
• I/O-controller: internally on the microcontroller

– Controls the I/O pins of the microcontroller
– General I/O pin:

• Either input or output

• The microcontroller has memory mapped I/O:
– Each I/O controller has a set of registers, each register is mapped on a – Each I/O controller has a set of registers, each register is mapped on a

specific address in the processor’s address space
– I/O controllers are controlled / programmed by writing to these registers

8

• 5 PIO ports, port A-E (5 sets of memory mapped registers)

• Each PIO port has 32 bits
– 32 I/O pins per PIO port
– Each register has 32 bits, each bit corresponds to a given I/O pin

on the microcontroller

PIO

Memory map

9

Interrupt

• Instead of polling I/O devices
• I/O units provide information when they want

attention
• CPU saves the state of its parts and jumps to an • CPU saves the state of its parts and jumps to an

interrupt routine
• Jumps back when the interrupt routine is completed

10

Exercise 2
• Produce sounds with built-in DAC

– Use a clock to generate interrupts regularly
– An interrupt routine is feeding the DAC with audio samples

• C language
– High-level language with good low-level opportunities– High-level language with good low-level opportunities
– Similar to Java – not object oriented
– Pointer (variable that holds memory addresses)

int a = 5; // variable of type int
int *p; // pointer to int
p = &a; // set p to point to a
*p = 42; // modify the value pointed by p (dereference)

11

Exercise 3

1. Write a Linux driver (for the use of buttons & LEDs)
– Device driver: software layer between the applications and the actual device

• they hide the details of how the device works
• they make a particular piece of hardware respond to a well defined programming

interface
• can be built separately from the rest of the kernel and ”plugged in” when needed• can be built separately from the rest of the kernel and ”plugged in” when needed

2. Pong game that runs under Linux on STK1000

12

IO devices in Linux
• IO devices are represented by special files in /dev

directory
• To make the I/O

– Open (with the system call open) the file that represents the device
to useto use

– Execute ioctl call, if necessary
– Read/write with read / write using lseek to switch position
– Close the file (close)

13

Drivers

• The drivers should be created as kernel modules
• The driver should be the only part of the system that

has direct access to the relevant PIO registers

14

Examination plan

Exercise 1 20 %
Exercise 2 20 %
Exercise 3 20 %
Final Test 40 % (Apr, 12th) Final Test 40 % (Apr, 12th)

Total 100 %

LAST EFFORT!!

