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Outline 
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Motivation 
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Motivation 
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Engineering: top-down 
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Nature: bottom-up 
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Conventional Engineering: attempts to analyze (top-down) systems 

 

Bio-Inspired Computation: attempts to synthesize (bottom-up) life-

like behaviors within computers and other artificial media 

Emergent Complexity 



8 

Examples: bio-inspired 

(Conway 1970) 

(Funes 1997) 

(Christensen, Grady, Dorigo 2009) 
(Hornby, Al Globus, 

Linden, Lohn 2006) 

(Doursat, Sanchez, 

Dordea, Fourquet, 

Kowaliw  2014) 
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Research Focus 

 

• How to apply artificial evolution and development for 

the design of cellular machines that can produce 

complex computation and modelling? 
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Research Questions 
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Research Questions 

RQ1: 

• What kind of information must be present in the 

genome in order to produce computation in any of the 

computational classes? 

 

 

 Universality classes: CA computational behavior (Wolfram) 
– What information must be present in the genome? 

– What information processing capability must be available in the gene regulation? 

– What cellular actions are required to be expressed as to be able to develop a target organism? 
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Research Questions 

RQ2: 

• How to quantify developmental complexity, i.e. 

emergent phenotypic complexity? 

 

 

Development process as a whole 

Phenotypic changes: trajectory, transient, attractor 
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Research Questions 

RQ3: 

• Do genome parameters give any information on the 

evolvability of the system? And if yes, can genome 

information be used to guide evolutionary search in 

favourable areas of the search space where the 

wanted emergent behavior is more likely to be found? 
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Research Questions 

RQ4: 

• How can scalability of artificial EvoDevo systems be 

improved towards achieving systems that can fully 

unleish their inherent complexity, e.g. potentially at 

the levels of complexity found in nature? 

 

 Gene duplication 

 Open ended 
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Contributions 
Paper N. Title Category 

1 On the Correlations Between Developmental Diversity and Genomic Composition A.1 

2 Genome Parameters as Information to Forecast Emergent Developmental Behaviors A.2 

3 Measuring Phenotypic Structural Complexity of Artificial Cellular Organisms B.1 

4 Evolution of Incremental Complex Behavior on Cellular Machines C.1 

5 Investigation of Genome Parameters and Sub-Transitions to Guide Evolution of 

Artificial Cellular Organisms 
C.2 

6 Evolutionary Growth of Genome Representations on Artificial Cellular Organisms 

with Indirect Encodings 
D.1 

7 Evolutionary Growth of Genomes for the Development and Replication of 

Multicellular Organisms with Indirect Encodings 
D.2 

8 Trajectories and Attractors as Specification for the Evolution of Behavior in Cellular 

Automata 
E.1 

9 Discrete Dynamics of Cellular Machines: Specification and Interpretation E.2 

10 On the Edge of Chaos and Possible Correlations Between Behavior and Cellular 

Regulative Properties 
E.3 
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Chronological Structure 
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Background 
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Background 

• Development 

• Evolution 

• Cellular Automata 

• Genotype-Phenotype mapping & representations 

• Genome parameters 

• Complexification 

Artificial EvoDevo 
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Artificial Development 

DNA ~ 22000 – 25000 genes 

Human body ~3.72x1013 cells 
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EvoDevo 
(Darwin 1859) 
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EvoDevo systems - CA 

• Cellular Automata can be considered as developmental systems 

 

• Organisms can develop (e.g. grow) from a zygote to a multi-cellular 

organism (phenotype) according to specific local rules, represented by 

a genome (genotype) 

 

• The genome specifications and the gene regulatory information control 

the cells’ growth and differentiation 

 

• The behavior of the CA is represented by the emergent phenotype, 

which is subject to shape and size modification, along the 

developmental process 
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Cellular Automata 

Stephen Wolfram 

1D CA classes 

John von Neumann 

Precursor of CA,  

Universal constructor 

Self-reproduction 
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Edge of Chaos & Genome 

Parameters 
Christopher Langton 

Lambda, Alife 

k

1
1

Other parameters: 

 

-

-  

-

-

Other parameters: 

 

- MFP (Li) 

- Sensitivity (Binder) 

- Z (Wuensche) 

- ..... 
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Genotype-to-Phenotype 

Encodings 

1 

2 

3 

7 

8 

(adapted from “Developmental 

Mappings and Phenotypic 

Complexity”, Lehre P.C., 2003) 
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Genotype-to-Phenotype 

Encodings 

 

• One-to-one direct Gtype-to-Ptype mapping 
 

• Redundant / many-to-one, neutrality 
 

• Indirect 

– Nature 

– Challenges  
• Restricted set (estimate) 

• If scaled-up? 

• Variable length (speciation) 

• Open ended search 
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Complexification 

The natural and biological process of incremental genome growth and elaboration 

 

• Genomes of different species have different lengths 

• LUA (Last Univestal Ancestor): all species diverged from a common 

ancestor ~ 3.5 - 3.8 billion years ago 

• Gene duplication: novelty & potential evolutionary innovation 

• Duplicated: redundant but < selection pressure 

• 38% of Homo Sapiens genome = gene duplication 

 

• Complexification with direct encodings (Federici & Downing, Stanley & 

Miikkulainen), e.g. NEAT (NeuroEvolution of Augmenting Topologies) 

 

• Complexification with development 
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Results 
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Results Summary 

• A.1: not presented 

• A.2: in details 

• B.1: not presented 

• C.1: not presented 

• C.2: in details 

• D.1: in details 

• D.2: shortly (if time allows) 

• E.1-E.2-E.3: not included in the thesis 
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A.2 – Complexity/Evolvability 

• Measure genomic properties 

• Predict emergent phenotypic properties of artificial 

organisms 

• Genome parameters: λ, M, μ 

• How the composition of genome information and 

gene regulation influences the developmental 

trajectory 
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CA model 
• minimalistic developmental system 

 

• 3 cell types  

  (type 0: quiescent, type 1 and type 2 for multicellularity) 

 

• all possible 35 = 243 regulatory input combinations are 

represented in a development table 
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Measurements of the 

Phenotypic Behavior 
 

• trajectory and attractor length: may indicate information about structural and 

adaptive properties of the organism 

– does  development  create a stable organism (point attractor) or does the 

organism end with a self-reorganizing structure that changes form in a 

cyclic manner (cyclic attractor)? 

 

• growth and change rate: may give information on the activity (internal properties) 

of the developmental processes 

– growth phase: the organism expand in size toward an ”adult” form 

– change phase: changes in the adult organism (measurement of the adult 

life of the organism) 
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Genome Parameters 

Evaluation of the genetic information 

 

• λ (Lambda): purely regulatory output 

 

• M (Majority): regulatory input and relative output, 

each entry considered independently 

 

• μ (Sensitivity): overall parameter calculated out of 

genetic dependency properties 
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Experimental Setup 

State space: 

3by3 = 3^9   =                  19.683 

4by4 = 3^16 =           43.046.721 

5by5 = 3^25 =  847.288.609.443 
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Results - λ 

Measurements in correlation to λ, average over 1000 tests for each λ value 

 

 

 

 

 

 

 

 

 

 

Average trajectory and attractor length           Average growth and change rate 
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Results - M 

Measurements in correlation to M, average over 1000 tests for each M value 

 

 

 

 

 

 

 

 

 

 

Average trajectory and attractor length           Average growth and change rate 
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Results - μ 

Measurements in correlation to μ, average over 1000 tests for each μ value 

 

 

 

 

 

 

 

 

 

 

Average trajectory and attractor length           Average growth and change rate 

 



38 

Comparison 
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Conclusion A.2 

• Parameters as measurement of genomic composition 

• Predict developmental behavior  

• Relation between genomic composition and developmental 

properties 

• Each genome parameter has a specific ability to measure 

properties of the resulting organism 

• Knowledge of probable developing properties may be helpful at the 

design stage of an EvoDevo system, if information on the desired 

target phenotype is known 

• Possible to use more parameters together to compose desired 

developmental behaviors, not achevable with a single parameter 
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C.2 Evolvability  

Goal: genome information (parameters) to guide evolution 

 

Nature: evolved robust genomes 

 

Robustness VS Evolvability 

 

• Robust: no change in functionality after mutation 

• Evolvable: genetic variation, adaptive evolution 

 

EA: sensitive to mutations 
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Genotype & phenotype distance 

(adapted from “Developmental Mappings and Phenotypic Complexity”, Lehre P.C., 2003) 

<dP=<dG 
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Experimental Setup 

• Genetic Algorithm (details in paper) 

• Initial population = most unfit (all transitions to 

quiescent state) 

• Standard fitness VS parameter in fitness 
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Results - target 1000 dev.steps 
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5000, 10000, 15000 
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Sub-Transitions 

• Growth 

• Differentiation 

• Death     (Lambda – quiescent state) 

• No-Change 

 

Lambda: single sub-transition parameter 

More states = more sub-transition classes, Lambda less 

meaning, possible to build custom parameter  
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Conclusion C.2 

– Genome information to guide evolution 

– Vast search space, indirect G-Ptype mapping, 

development 

– Where the target behavior is more likely to be found 

– Lambda in fitness to speedup convergence 

– Sub-Transitions 

– Composite parameters 

– Growth – Death transition 

– Filter  
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D.1 Scalability 

Motivation (Why): 

• In nature genomes of different species have different lengths 

• Scaling of artificial systems (state, search and solution space) 

• Genotype representation problem (estimated, heuristics) 

 

Genome Growth (How) 

• Allows speciation 

• Through gene duplication (in nature) 

• Complexification (incremental elaboration) 

• Compare full vs restricted vs growing (genomes) 

Different Developmental Model 
• Why? 

• How? 
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Regulation mechanisms: 
• Upper bound, duplication rate, optimization time, elitism 
 

Selection: 
• Σ (actual fitness, exploitation parameter, innovation parameter) 
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Scalability in search space – genome comparison 
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Scalability in state space 
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Scalability in solution space - geometry 
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Conclusion D.1 

• Evolutionary growth of genome representations 

• Compact and effective genomes 

• Scalability of search space 

• Scalability of state space 

• Scalability of phenotypic resources 

• Start in low dimensional space 

• Incrementally increase genotype complexity 
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D.2 

• Genome Growth 

 

• Instruction-Based Development Instruction Description Meaning Code 

AND N(op1) = N(op1) ˄ N(op2) AND operation 0 

OR N(op1) = N(op1) ˅ N(op2) OR operation 1 

XOR N(op1) = N(op1) ⊕ N(op2) XOR operation 2 

NOT N(op1) = ¬ N(op1)  NOT operation 3 

INV N(op1) = n – N(op1) Inverse state 4 

MIN N(op1) = min (N(op1), N(op2))  Minimum 5 

MAX N(op1) = max (N(op1), N(op2)) Maximum 6 

SET N(op1) = N(op2) Set value 7 

INC N(op1) = N(op1) + 1 Increment 8 

DEC N(op1) = N(op1) – 1 Decrement 9 

SWAP N(op1) ↔ N(op2) Swap  10 

ROR LCR → RLC Rotate right 11 

ROL LCR → LCR Rotate left 12 

ROU UCD → CDU Rotate up 13 

ROD UCD → DUC Rotate down 14 

NOP N(op1) = N(op1) No operation 15 
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Fig. 

Table-based Evolution 

Success  

Rate % 

Genotype Size (# genes) 

Max        Avg         Min         StDev 

Generations 

Avg.     StDev. 

2a 58 32 32 32 0 1336 2294 

2b 69 32 32 32 0 2254 2501 

2c 19 1024 1024 1024 0 5002 3157 

2d 23 32 32 32 0 2668 2942 

Fig. 

Instruction-based Growing Evolution 

Success  

Rate % 

 Genotype Size (# genes) 

Max        Avg         Min         StDev 

Generations 

Avg.     StDev. 

2a 98 31 14.34 5 8.4318 1257 1152 

2b 98 31 15.28 5 7.0973 3956 1690 

2c 46 46 19.65 6 9.2236 6424 1922 

2d 100 13 5.25 4 1.4097 285 108 

Fig. 

Table-based Evolution 

Success  

Rate % 

Genotype Size (# genes) 

Max        Avg         Min         StDev 

Generations 

Avg.     StDev. 

2a 85 32 32 32 0 775 1393 

2c 8 1024 1024 1024 0 4331 3576 

2d 1 32 32 32 0 8259 0 

2e 0 1024 1024 1024 0 - - 

Fig. 

Instruction-based Growing Evolution 

Success  

Rate % 

Genotype Size (# genes) 

Max        Avg         Min         StDev 

Generations 

Avg.     StDev. 

2a 100 7 2.93 2 1.1742 39.7 19.6 

2c 100 6 2.84 2 1.1166 39.6 22.3 

2d 100 8 3.06 2 1.2128 41.8 20.5 

2e 100 5 1.38 1 0.8012 9.4 10.7 
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6  1  3 3  3  1 8  3  4 11  4  3 6  3  0 2  4  3 1  1  4 2  1  4 6  4  1 15  4  3 5  2  0 1  2  4 13  4  0 0  2  0 

• Example of evolved program for the development of structure 2c – patch structure 

• After development step 9 the structure remains stable (point attractor) 

• The program is composed by 14 instructions (one instruction each gene)  

 

• INSTRUCTION CODE, OPERAND 1, OPERAND 2 (if the operand is not applicable for the given 

instruction, the value is ignored) 

 

• Operands: UP = 0, RIGHT = 1, DOWN = 2, LEFT = 3, CENTRE = 4. 
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Tim
e, D

evelo
p

m
e

n
t Step

s 

Examples of evolved solutions for 

the replication of the structures 2d, 

2c and 2e. 
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Conclusions and Further Work 
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Conclusion 

• Genome parameters, forecast emergent developmental 

phenotypes (A.1, A.2) 

• Abstract measures of developmental complexity (B.1, A.1, A.2) 

• Genome parameters as evolvability evaluation (C.1) 

• Genome parameters to guide evolution (C.2) 

• Evolutionary growth of genomes (D.1, D.2) 

 

GUIDANCE ON HOW TO BUILD EVODEVO SYSTEMS 
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Contributions 

RQ1: ”What kind of information must be present in the genome in order to  

produce computation in any of the computational classes?” 

 

• Genome parameters: plausible indication of developmental properties 

• Do not guarantee developmental behavior (the other way around) 

• Parameters generalized for different dimensionalities, CA size, cell types 

• Genome sub-transitions and sub-parameters (death – growth) 
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Contributions 

RQ2: ”How to quantify developmental complexity, i.e. emergent phenotypic  

complexity?” 

 

• As measure of phenotypic & developmental properties: developing 

organism as a whole, phenotypic changes  

• Trajectory and attractor length: abstract (application / computational 

task independent) 

• Approx. of Kolmogorov Complexity: compression algorithms 
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Contributions 

RQ3: ”Do genome parameters give any information on the evolvability of  

the system? And if yes, can genome information be used to guide  

evolutionary search in favourable areas of the search space where the  

wanted emergent behavior is more likely to be found?” 

 

• Genomes with given parameter value are likely to evolve to similar 

behaviors, as long as offspring has similar parameter value (evolvability) 

 

• Parameters (as Lambda or sub-transitions) to guide evolution 
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Contributions 

RQ4: ”How can scalability of artificial EvoDevo systems be improved  

towards achieving systems that can fully unleish their inherent complexity,  

e.g. potentially at the levels of complexity found in nature?” 

 

• Complexification: evolutionary growth of genomes 

• Indirect encoding are a necessity (if target nature levels of complexity) 

• Gene duplication is a plausible mechanism 

• Different genotype-to-phenotype mappings 
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Further Work 

• Robustness of solutions (at gtype and ptype level) 

 

• Other parameters: Sensitivity, MFP, Z, sub-transitions 

 

• Growth in state space (true complexification) 

 

• Self-modifying instructions 
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Thanks! 

 

 

 

Questions? 
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Bonus Slides 
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Cellular Automata 

Countable array of discrete cells i Countable array of discrete cells i 

 

Discrete-time update rule Φ  
(operating in parallel on local neighborhoods of a given radius r) 

 

Alphabet: σi
t ∈ {0, 1,..., k- 1 } ≡ A 

 

Update function: σi
t + 1 = Φ(σi - r

t , …., σi + r
t) 

 

st ∈ AN 

 

Global update Φ: AN → AN  

 

st = Φ st - 1 
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Lambda Parameter 

 

 

• n =  number of transitions to the quiescent state (state 0)  

• K = number of cells types = 3 (in our model) 

• N = neighborhood size = 5 (Von Neumann neighborhood) 
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Majority Parameter 

• how many neighborhood configurations in the rule table follow the 

majority state to determine the next state 

 

 

 

• m = number of cells in the neighborhood  

• V(m+1) = value of the cell being considered, at the next time step 

• maj() = function that retrieves the most present cell type (or the set of 

most present cell types) in the neighborhood 
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Sensitivity Parameter 

• measures the number of changes in the output of the transition table 

based on a change in the neighborhood, one cell at a time, over all the 

possible neighborhoods of the rule being considered 

 

 

• m = number of cells in the neighborhood 

• n = possible neighborhood configurations (V1V2…Vm = 35 = 243) 

• K = number of cell types 

 =  
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von Neumann architecture  

• 1 complex processor 

• tasks executed sequentially 

 

 

 

cellular computing 

• myriad of small and unreliable parts: cells 

• simple elements governed by local rules  

• cells have no global view 
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Results for 4x4 organisms plotted as function of λd. 

1000 tests for each λd. 

Results for 5x5 organisms plotted as function of λd. 

1000 tests for each λd. 

A.1 
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4x4 

5x5 
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Average growth and change rate in correlation to λd on a 4x4 organism. 

Average over a 1000 tests for each λd value 
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B.1 

Image from ”A New Kind of Science”, Stephen Wolfram (2002), Wolfram Media 
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Goal 

• Can genome information be used to predict emergent structural 

complexity?  

  

1. Measure phenotypic structural complexity of artificial cellular 

organisms (approximation of Kolmogorov complexity) 

 

2. Relate Lambda genome parameter to the measured structural 

complexity. Estimate developed organisms’ phenotypic complexity 
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Kolmogorov Complexity 

Image from xkcd.com 
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Kolmogorov Complexity 

• The notion of complexity is used differently in distinct fields of computer science. 

 

• Definition (Kolmogorov complexity): Fix a Turing Machine U. We define the 

Kolmogorov function, C(x) as the length of the smallest program generating x.  

 

 C(x) = minp { |p| : U(p) = x} 

 

 

• Invariance Theorem: the particular choice of the universal machine only affects 

C(x) by a constant additive factor  

     ∀ x, C(x) ≤ |x| + c 
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Incomputability 

• Kolmogorov complexity is incomputable. Proof by contradiction or by reduction 

to the non-computability of the halting problem (Turing equivalent) 

 

• Approximations by data compression: hardly compressible strings have 

presumably high Kolmogorov complexity. Complexity is proportional to the 

compression ratio 

 

• Incompressibility Lemma: some strings are not compressible, i.e. random strings 

 Formally, a string x is c-incompressible if C(x) ≥ |x| - c 
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Lempel-Ziv compression 

• Compression algorithms tend to compress repeated patterns and structures, 

thus being able to detect structural features in phenotype states. 

 

• Deflate: variation of LZ77, loseless data compression algorithm, computationally 

inexpensive, independent of the dimensionality of the state 
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• 1D CA: string representing the state of the system at a certain time step 

compressed directly 

 

• 2D CA (3x3 example, same for 3D where all the rows are listed for all the depth 

levels) 

 

 

 

 

t = Deflate (r) 

q = Length (t) 

   rmin = ”000000000”  rmax = ”012345678”  

  qmin = Length(Deflate(rmin)) qmax = Length(Deflate(rmax)) 

 

 

c = (q - qmin) / (qmax - qmin) 
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Experimental Setup 

State space sizes: 

3by3 = 3^9   =                  19.683 

4by4 = 3^16 =           43.046.721 

5by5 = 3^25 =  847.288.609.443 
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Results (exp. 1) 
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Results (exp. 2) 
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Results (exp. 2) 
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Conclusion 

 

• Phenotypic structural complexity is strongly related to Lambda genome 

parameter and its ability to detect different behavioral regimes 

• Dimensionality independent (1D, 2D, 3D CA) 

• Possible to characterize parameter space when dimensionality, # states and 

neighborhood are rather small. Not possible with transient and attractor length 
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C.1 

Results  

(dead genomes) 
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Genomes generation with λ parameter 

A.2 

 Genomes generated with predefined values of λ 

Similar method to Langton’s random table method 

 

For every entry in the development table: 

• with probability (1- λ) the cell type at the next 

developmental step is quiescent (type 0) 

• with probability (λ), the cell type at the next 

developmental step is generated by a uniform 

random distribution among the other cell types (type 

1 or 2) 
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Genomes generation with M parameter 

A.2  

 • if there are more than 3 occurrences of a cell type: 

– with probability M the cell type at the next developmental 

step follows the most present cell type in the neighborhood 

– with probability 1-M the cell type at the next developmental 

step is generated by a uniform random distribution among 

the other two cell types (the minority in the neighborhood) 

• If there are 2 cell types with occurrence 2  

– with probability M/2 one of those 2 cell types is chosen 

– with probability 1–M the cell type at the next developmental 

step has the same type as the less present cell type in the 

neighborhood 
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0 

Genomes generation with μ parameter 

A.2 
 

μ is easily computable for a specific development table 

 

Much harder to generate a development table with a 

target μ value, because of entry dependencies 

 

A Genetic Algorithm is used 


