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Abstract — The genomes of biological organisms are not fixed 
in size. They evolved and diverged into different species 
acquiring new genes and thus having different lengths. In a way, 
biological genomes are the result of a self-assembly process 
where more complex phenotypes could benefit by having larger 
genomes in order to survive and adapt. In the artificial domain, 
evolutionary and developmental systems often have static size 
genomes, e.g. chosen beforehand by the system designer by trial 
and error or estimated a priori with complicated heuristics. As 
such, the maximum evolvable complexity is predetermined, in 
contrast to open-ended evolution in nature. In this paper, we 
argue that artificial genomes may also grow in size during 
evolution to produce high-dimensional solutions incrementally. 
We propose an evolutionary growth of genome representations 
for artificial cellular organisms with indirect encodings. Genomes 
start with a single gene and acquire new genes when necessary, 
thus increasing the degrees of freedom and expanding the 
available search-space. Cellular Automata (CA) are used as test 
bed for two different problems: replication and morphogenesis. 
The chosen CA encodings are a standard developmental table 
and an instruction based approach. Results show that the 
proposed evolutionary growth of genomes’ method is able to 
produce compact and effective genomes, without the need of 
specifying the full set of regulatory configurations.  

Keywords — Artificial Development, Evolution, Replication, 
Complexification, Cellular Automata, Instruction-based Approach. 

I. INTRODUCTION 
Artificial Evolutionary and Developmental (EvoDevo) 

systems target principles and properties that are present in 
natural biological systems, such as embryogenesis, self-
organization, plasticity, genotype-to-phenotype mappings, and 
self-repair. A major challenge for EvoDevo is the development 
of complex morphologies and structures, potentially at natural 
levels of complexity [32]. Biological multi-cellular organisms 
made of trillions of cells grow from a single cell which holds 
the complete genome [3]. However, organisms of different 
species have genomes of different lengths. Speciation highly 
relied on a gene duplication mechanism [18]. In fact, in 
biological organisms there is a small probability that when a 
parental gene is copied, more than a copy may arise, i.e. gene 
duplication. As such, biological evolution is an incremental 
process that builds up genomes of increasing complexity.  

In contrast, artificial systems often rely on direct one-to-one 
encodings, i.e. genotype-to-phenotype mapping, where the full 
set of genes is mapped to the phenotype entities directly.  This 
solution has several drawbacks, for instance scaling up the 
phenotype resources would imply a larger genotype which 
would result in a larger search space. Another possibility is to 
open for an indirect encoding, i.e. development or generative 
mapping. Such mappings are a necessity when then number of 
phonotype entities is large [33]. However, the scalability of 
such systems is still an open challenge. In fact, for several 
developmental systems [20, 37], it would not be possible to 
represent all the possible regulatory combinations in the 
genotype. The system designer would need to make 
assumption or use complex heuristic to find out a reasonable 
genome size, such that it would be large enough to contain a 
potential solution [5, 37, 38].  

In this paper, we propose a biologically inspired 
evolutionary growth of genomes with indirect encoding, which 
does not rely on any a priori knowledge on the problem 
complexity or required genome size. Genotypes are initialized 
with a single gene and genotype size is incrementally evolved 
by means of gene duplications. This would guarantee a low 
dimensionality of the search space that would, in turn, evolve 
increasingly complex solutions and add newly created degrees 
of freedom only when needed. The proposed framework is 
tested on two different problems: the development of given 
patterns starting from an initial seed [9] and the replication of 
cellular structures [15]. Self-replication allows reuse of genetic 
material, reducing genome size and enabling the production of 
complex structures. 

Related work was done towards achieving genome size 
expansion [6, 12, 14, 17] with variable length genomes, mostly 
using direct encodings [10, 34]. Research on complexification 
with direct encodings may not be conclusive but the idea of 
incremental evolutionary growth of genomes has a potential for 
exploration with indirect encodings [32].  With direct 
encodings, a variable length genome allows to duplicate a gene 
that is mapped to a single phenotypic entity. This would result 
in a duplication of the correspondent phenotypic structure 
itself. Such approach has been shown to be particularly 
successful when modular structures ought to be evolved [7]. In 
contrast, with indirect encodings, adding a new gene may have 



disruptive effects, since genes have shared and overlapping 
regulations. A challenge is to allow the newly added gene 
enough time to be incorporated and optimized in the genome. 
An important property that allows such optimization is 
neutrality [29, 30].  

The paper is laid out as follows: section 2 provides 
background information on genome expansion and instruction-
based development. Section 3 presents the cellular 
developmental model and the framework for evolutionary 
growth of genomes. In section 4 the problems under 
investigation are described and section 5 presents the 
experimental setup. Section 6 provides the experimental results 
together with discussion and Section 7 concludes the work. 

II. RELATED WORK 

A. Growing Genome 
The mechanism of genome expansion through gene 

duplication played a key role in natural evolution [35, 28]. 
There is strong evidence that around 38% of the Homo Sapiens 
genome is a result of gene duplication [16]. Such process 
contributed to the emergence of complex regulatory 
mechanisms in gene regulatory networks, providing plasticity 
and adaptivity. In the artificial domain, previous work was 
done towards using variable length genomes [36] and 
achieving genome size expansion [6, 12, 14, 17, 1, 2]. Federici 
and Downing [10] investigated neutral gene duplications in a 
direct encoding cellular model with environmental chemicals. 
Stanley and Miikkulainen [34] introduced NeuroEvolution of 
Augmenting Topologies (NEAT), a complexification method 
for the incremental evolution of neural network topologies. 
Their main goal was to evolve robot controllers with direct 
encodings through gene duplications. A CA framework for the 
evolutionary growth of genomes has been implemented with 
indirect encodings by Nichele and Tufte [21]. The goal was to 
evolve trajectories and attractors of different lengths. This 
approach has been shown to be suitable to evolve cellular 
automata local transition functions starting from a single 
neighborhood configuration, being able to scale well when the 
search space, the state space or the phenotype resources were 
scaled up. As a step forward, we investigate the proposed 
framework in [21] with an advanced genotype-to-phenotype 
indirect encoding, namely the instruction-based approach.  

B. Instruction-based Approach 
The idea of evolving instruction-based representations is a 

rather old approach [13]. Cartesian Genetic Programming 
(CGP) has been introduced by Miller and Thomson [19] for the 
evolution of digital circuits by representing a program as a 
directed graph. Sipper [31] proposed the evolution of non-
uniform cellular automata with cellular programming, an 
evolutionary approach based on CA propagation, NAND and 
XOR operations. This has been proven to be computation 
universal. Bidlo and Skarvada [4] introduced the Instruction-
Based Development (IBD) for the evolutionary design of 
digital circuits. Bidlo and Vasicek [5] exploited IBD for the 
development and replication of cellular automata structures. 
Even though their approach has been shown to improve the 
overall success rate, the number of available instruction was 

arbitrarily chosen. IBD allows representing CA transition 
functions by means of a sequence of instructions, i.e. a 
program, which is executed on local neighborhoods in parallel 
and deterministically determines the next state of each cell. In 
contrast, a traditional CA local transition function specifies all 
the possible neighborhood combinations together with the next 
state of the cell being considered. If the number of cell states of 
neighborhood size is increased, specifying all the 
neighborhoods may become not feasible. Evolutionary growth 
of genomes has been used to evolve local transition functions 
starting from a single neighborhood configuration [21]. Using 
an instruction-based approach removes the problem of 
specifying all the combinations in the transition function, but 
the problem of determining the number of necessary 
instructions to solve a given problem still exists. As such, we 
propose an IBD based on evolutionary growth of genome. 

III. CELLULAR DEVELOPMENTAL MODEL 
The cellular developmental model is based on 2-

dimensional cellular automata, with synchronized cellular 
cycle, parallel updates and discrete cell states. For more details 
on the model see [21, 24, 23, 22, 25]. A CA can be considered 
as a developing organism, where the genome specifications and 
gene regulation information control the cell’s growth and 
differentiation. The behavior of the CA is represented by the 
emerging phenotype, which is subject to size and shape 
modifications. The cellular model has cyclic boundary 
conditions and uses von Neumann neighborhood (5 neighbors, 
i.e. up, down, left, right and centre cell).  

A standard table-based CA transition function would 
consist of the specification of all the possible neighborhood 
configurations, together with the state of the central cell at the 
next time-step. This is shown in Figure 1, for a CA with n cell 
states. The cell type 0 is defined as the empty state, i.e. 
quiescent. The column C(t+1) can be any of the possible cell 
states. As such, the table-based representation would consist of 
n5 possible neighborhood configurations (with n possible cell 
states and 5 neighbors). If a CA transition table ought to be 
evolved, with 4 cell states and 5 neighbors, the total number of 
different transition functions, i.e. search space, would be 4^4^5 
= 41024 = ~ 3.23 x 10616.  
 

 

Fig. 1. CA model with cyclic boundaries (left), von Neumann neighborhood 
(centre), table-based transition function for the CA development. 

For the instruction-based approach, each gene in the 
genotype would consist of an instruction with a maximum of 



 
Fig. 2. Target structures for the development and replication problems.   

 

two operands chosen among the neighbors, as specified in 
Table 1. In our model, there are a total of 16 instructions and 
each operand can be one of the five neighbors. As such, the 
search space for each instruction is 16x5x5= 400. Evolutionary 
growth of genomes is initialized by a single instruction and 
grows the program size incrementally. A developmental 
genome composed by 5 instructions (as some results in this 
paper) would have a search space of 4005= 1.024 x 1013 (many 
orders of magnitude less than the traditional method).   

TABLE I.  THE INSTRUCTION SET FOR THE CELLULAR DEVELOPMENT 
PROCESS.  N(op1) AND N(op2) REPRESENT TWO CELL STATES IN THE 
NEIGHBORHOOD FOR THE TWO OPERANDS OF THE INSTRUCTION. n 
REPRESENTS THE NUMBER OF CELL STATES. ALL OPERATIONS ARE 

PERFORMED MODULO(n) TO GUARANTEE A PERSITENT RESULT. 

Instruction Description Meaning Code 
AND N(op1) = N(op1) ˄ N(op2) AND operation 0 
OR N(op1) = N(op1) ˅ N(op2) OR operation 1 

XOR N(op1) = N(op1) ⊕ N(op2) XOR operation 2 

NOT N(op1) = ¬ N(op1)  NOT operation 3 
INV N(op1) = n – N(op1) Inverse state 4 
MIN N(op1) = min (N(op1), N(op2))  Minimum 5 

MAX N(op1) = max (N(op1), N(op2)) Maximum 6 
SET N(op1) = N(op2) Set value 7 
INC N(op1) = N(op1) + 1 Increment 8 
DEC N(op1) = N(op1) – 1 Decrement 9 

SWAP N(op1) ↔ N(op2) Swap  10 
ROR LCR → RLC Rotate right 11 
ROL LCR → LCR Rotate left 12 

ROU UCD → CDU Rotate up 13 
ROD UCD → DUC Rotate down 14 
NOP N(op1) = N(op1) No operation 15 

 

The resulting program is executed in parallel on a local 
neighborhood copy for each CA cell. For example, if the 
program (MIN UP LEFT) (XOR CENTRE UP) is executed, a 
local copy for each CA cell’s neighborhood is considered (5 
neighbors): UP, RIGHT, DOWN, LEFT, and CENTRE (the 
central cell being considered). The first executed instruction is 
UP = MIN(UP, LEFT) which updates the UP neighbor. The 
second is CENTRE = XOR(CENTRE, UP), which updates the 
CENTRE neighbor. At the end of the program, the state of the 
CENTRE cell is copied back as the next state (the result of the 
transition function). 

A. Evolutionary growth of genomes 
A conventional Genetic Algorithm (GA) is used for the 

evolution of table-based transition functions. For the 
instruction-based transition function the genotype information 
is composed by a sequence of genes that represent a 
developmental program (each gene codes for an instruction 
with relative operands). As such, the GA is modified with the 
introduction of the following regulation mechanisms: 

1. There is an upper bound on the number of genes that can be 
added, which coincides with the maximum possible 
neighborhoods for the table-based transition function; 

2. There is a duplication rate which guarantees that a new 
gene is added with a certain probability to each individual 
in the population; 

3. Added genes are guaranteed time for optimization, before a 
new addition can occur. This means that there is a counter 
and a threshold which specifies that a genome growth can 
occur only after a certain number of generations without 
an increase in the overall best fitness in the population 
(optimization time threshold). Duplication happens when 
there is no room for further genotype optimization; 

4. There is an elitism mechanism. This is done to guarantee 
genotypes with compact and effective genomes will be 
kept in the population no matter what. This enables 
speciation and survival of fit individuals with smaller 
genomes.  

If the four regulation mechanisms hold, a gene addition 
occurs. A genotype that consists of n genes at a given 
generation acquires a new gene which is an exact copy of a 
randomly selected gene already present in the genome. The 
selected gene is copied and appended; the genotype will then 
consist of n+1 genes.  

In the process of selecting individuals, either for offspring 
generation or for gene addition, a weighted selection is 
implemented with the actual fitness that counts 80% and the 
innovation parameter that rewards larger genomes, which 
counts 20%. The innovation parameter allows newly added 
genes, which most likely result in a fitness-neutral or fitness-
decrease, to be allowed to survive and be optimized. For more 
details on the framework for evolutionary growth of genomes, 
please refer to [21].  

IV. PROBLEMS UNDER INVESTIGATION 
A traditional table-based CA evolution is compared to an 

evolutionary growth of genomes in terms of genotypes size 
(number of necessary genes), success rate and number of 
generations.  The following two problems were investigated: 



1. Morphogenesis: a target structure develops out of a seed (of 
non-quiescent type) placed in the centre of the grid, while 
all the other cells are in the quiescent state. There is a 
maximum number of development steps in which the 
target pattern may develop. The size of the grid is the same 
as the size of the target structure. 

2. Replication: a structure placed in the centre of the grid is to 
be replicated in a given number of development steps. At 
least 3 replicas of the initial structure are required; 

The target structures are represented in Figure 2 and have 
been chosen according to widely used examples in literature 
[36, 8, 20, 11, 38]. In particular, they are chosen to cover a 
variety of properties, complexities and characteristics of 
developmental systems, such as self-organization, 
modularization, and diversification. The identified classes are: 
2a) mosaic pattern (5x5 with 2 cell types), 2b) border pattern 
(6x6 with 2 cell types), 2c) patch pattern (6x6 with 2 cell 
types), 2d) point-symmetric pattern (5x5 with 2 cell types), 2e) 
shifted symmetry pattern (7x7 with 4 cell types).  

Figure 3a) represents the initial seed for the morphogenesis 
problem. In the target structures to be replicated or developed, 
the available number of cell types is set to 2 or 4, as 
represented in Figure 3b), which are mapped to the cell types 
in Figure 2.  

 
For the morphogenesis problem, candidate solutions are 

evaluated with the maximum value of all the partial matches in 
all the development steps. For the replication problem, the 
whole grid is inspected to find perfect replicas of the target 
structure in each development step and the 3 top matches 
(perfect or partial) are considered. A bonus is given if a perfect 
replica is found. The used fitness function for the replication 
and development problem are similar to those described in [5].   

V. EXPERIMENTAL SETUP 
In both test cases (morphogenesis and replication), 

transition functions are evolved to solve the target problem 
(develop or replicate one of the structures in Figure 2). All the 
experiments are executed for 100 independent GA runs. Table-
based rules and program-based rules are evolved for a 
maximum of 10000 generations, with standard GA and 
evolutionary growth of genomes, respectively. If a solution has 
not been found in 10000 generations, the experiment is 
considered not successful. The population of genotypes, i.e. 
transition functions, consists of 30 individuals for the 
development problem and 16 individual in the replication 
problem. Each CA genotype rule is executed and evaluated for 
30 development steps.  The GA selection process uses 

proportionate selection base 4 (four individuals are picked 
randomly and the best among them is selected). In addition, 
one elite is always transferred to the offspring. For the standard 
table-based transition function, all the possible neighborhood 
configurations are explicitly represented, together with the 
correspondent next value of the cell under consideration. The 
chosen mutation rate for each of the next cells’ states is 0,02 
for the structures with 2 cell types and 0,066 for the structures 
with 4 cell types (see Figure 2). For the program-based 
transition function, the genotype size grows along evolution. 
Each of the genes represents an instruction, i.e. an instruction 
code and two operands. As such, 2 mutations each genotype, 
i.e. program, are performed. Both operation codes and 
operands can be selected for mutation, within the correct range. 
Crossover is not suitable for our experiments (due to variable 
length genomes) and thus it is not included.    

A. Morphogenesis 
For the morphogenesis problem, the target patterns are the 

following (from Figure 2): 

• 2a) mosaic pattern of size 5x5 with 2 cell types; 
• 2b) border pattern of size 6x6 with 2 cell types; 
• 2c) patch pattern of size 6x6 and 4 cell types (well known 

as the French Flag problem [27]); 
• 2d) symmetric pattern of size 5x5 and 2 cell types. 

In all the cases, the initial CA state is a zygote cell of type 
1, as represented in Figure 3a and all the other cells in the grid 
are of type 0 (quiescent). The CA size is set to the target 
pattern size. Genomes for the table-based transition function 
are initialized by listing all the possible neighborhood 
configurations and the next value of the considered cell 
randomly generated among the available cell types. As such, 
the total number of genes is 25 = 32 (with 2 cell types and 5 
neighbors) and 45 = 1024 (with 4 cell types and 5 neighbors).  

For the program-based transition function, the genomes are 
initialized with a single randomized gene (random instruction 
code and operands). Genomes grow during evolution using the 
described evolutionary growth of genomes framework with the 
following regulation parameters:  

1. Genes number upper bound, i.e. maximum program length, 
of 32 and 1024 instructions for 2 and 4 cell types’ 
structures respectively. This coincides with the total 
number of neighborhood combinations for a classical 
table-based CA; 

2. Duplication rate, i.e. rate at which a gene can be added, of 
1/(population size). On average, one out of the 30 
genomes acquires a new gene, if the following point is 
true;   

3. Optimization time threshold, i.e. number of generations 
without overall fitness increase, of 30 generations for 
structures 2a) and 2d), 100 generations for structures 2b) 
and 2c);  

4. Elitism of 1 individual in the population which guarantees 
that the fittest survives no matter what. 

 
Fig. 3. a) initial state for the morphogenesis problem. b) available cell types 



B. Replication 
For the replication problem, the structures to be replicated 

are (from Figure 2): 

• 2a) mosaic pattern of size 5x5 with 2 cell types, in a grid of 
size 27x27 cells (enough space to replicate on all sides); 

• 2c) patch pattern of size 6x6 and 4 cell types (well known 
as the French Flag problem [27]), in a grid of size 30x30 
cells; 

• 2d) symmetric pattern of size 5x5 and 2 cell types, in a grid 
of size 27x27 cells; 

• 2e) shifted symmetry pattern of size 7x7 and 4 cell types, in 
a grid of size 33x33 cells. 

The minimum number of wanted replicas is set to 3 and 
each replica has to have a border of quiescent cells (type 0) that 
surrounds the structure. The initialization of genomes is the 
same as for the morphogenesis problem and the evolutionary 
growth of genomes has the following parameters: 

1. Genes number upper bound of 32 and 1024 instructions for 
2 and 4 cell types’ structures respectively; 

2. Duplication rate of 1/(population size = 16);   

3. Optimization time threshold of 10 generations;  

4. Elitism of 1 individual. 

VI. RESULTS 

A. Morphogenesis 
The results for the morphogenesis problem are summarized 

in Table II, where the traditional table-based evolution is 
compared with the instruction-based growing evolution for 
each of the target structures to be developed.  

As expected, the growing evolution function has a much 
higher success rate.  
 

TABLE II.  MORPHOGENESIS (AVG. 100 RUNS) 

Fig. 
Table-based Evolution 

Success  
Rate % 

Genotype Size (# genes) 
Max        Avg         Min         StDev 

Generations 
Avg.     StDev. 

2a 58 32 32 32 0 1336 2294 

2b 69 32 32 32 0 2254 2501 

2c 19 1024 1024 1024 0 5002 3157 

2d 23 32 32 32 0 2668 2942 

Fig. 
Instruction-based Growing Evolution 

Success  
Rate % 

 Genotype Size (# genes) 
Max        Avg         Min         StDev 

Generations 
Avg.     StDev. 

2a 98 31 14.34 5 8.4318 1257 1152 

2b 98 31 15.28 5 7.0973 3956 1690 

2c 46 46 19.65 6 9.2236 6424 1922 

2d 100 13 5.25 4 1.4097 285 108 

 Looking at the evolved genotype size, the table-based 
evolution has fixed number of genes, defined by the possible 
neighborhood configurations. The growing evolution function 
is able to achieve optimized genomes which are compact and 
effective. In particular, the patch structure 2c) would need 1024 
genes for the table-based evolution whether it need only 19.65 
genes on average for the growing evolution function. The 
differences in genotype size between table-based evolution and 
instruction-based growing evolution are significant (Student t-
test, p<0.0001) in all the analyzed cases. Moreover, the 
necessary number of generations that evolution needs to find 
solutions is not larger for the growing evolution function. The 
difference in the average number of generations is not 
statistically significant (Student t-test).  Figure 4 shows a bar 
plot where the differences in genotype size are summarized for 
the morphogenesis problem. In conclusion, it is possible to 
notice that for structures with 2 cell types, the average number 
of necessary genes is halved. For structure 2c) which has 4 cell 
types the shrinking factor is more accentuated (y-axes has log. 
scale). An example of evolved solution is shown in Figure 8. 

 

Fig. 4. Average genotype size for the morphogenesis problem. Table-based 
evolution in blue and growing evolution in red. 

B. Replication 
Table III summarizes the results for the replication 

problem. Again here the growing evolution function has higher 
success rate, being able to achieve solutions for all structures 
with a success rate of 100%. 

TABLE III.  REPLICATION (AVG. 100 RUNS) 

Fig. 
Table-based Evolution 

Success  
Rate % 

Genotype Size (# genes) 
Max        Avg         Min         StDev 

Generations 
Avg.     StDev. 

2a 85 32 32 32 0 775 1393 

2c 8 1024 1024 1024 0 4331 3576 

2d 1 32 32 32 0 8259 0 

2e 0 1024 1024 1024 0 - - 

Fig. 
Instruction-based Growing Evolution 

Success  
Rate % 

Genotype Size (# genes) 
Max        Avg         Min         StDev 

Generations 
Avg.     StDev. 

2a 100 7 2.93 2 1.1742 39.7 19.6 

2c 100 6 2.84 2 1.1166 39.6 22.3 

2d 100 8 3.06 2 1.2128 41.8 20.5 

2e 100 5 1.38 1 0.8012 9.4 10.7 
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Fig. 5. Exam
ples of evolved solutions for the replication of the structures 2d, 2c and 2e. Three perfect replicas are required and each of them

 is a replicator itself. 

 



 

 

Fig. 6. Average genotype size for the replication problem. Table-based 
evolution in blue and growing evolution in red. 

 With table based-evolution, the only structure with a high 
success rate (85%) is 2a). For structure 2c), solutions were 
found only 8% of times and for structure 2d) one a single 
solution out of 100 runs. For structure 2e) no solution was 
found by the table-based evolution.  Analyzing the average 
genotype size for both methods, it is evident that growing 
evolution is able to evolve particularly optimized genomes, 
being able to evolve in most cases the xor-based (addition 
followed by modulo division) replicator. As such, having a 
search space that grows incrementally makes it possible to add 
degrees of freedom during evolution only when needed. This 
can be observed by the number of needed generations to find 
solutions, which is much lower for the growing evolution 
function, which performs better both in terms of overall 
genome size and needed generations. The differences are 
statistically significant (Student t-test, p<0.0001) in all cases (t-
test not calculated when less than 2 solutions were available, 
with structure 2d) and 2e) for the table-based evolution).   

 Figure 6 shows a bar graph comparison of the evolved 
genome size for a full table (table-based evolution function) 
and growing evolution, where it is possible to notice 
graphically the big difference in number of used genes. Four 
examples of evolved solutions for the replication of structures 
2d, 2c and 2e are shown if Figure 5. The first two examples 
show two different strategies for the replication of the 
symmetric structure in Figure 2d. In both cases, the result after 
9 development steps is 3 perfect copies of the initial structure. 
The third example shows the replication of the patch structure 
in Figure 2d (also known as the French Flag problem). The last 
example plots the replication of the shifted symmetric structure 
in Figure 2e, where 25 development steps are necessary to 
obtain 3 perfect replicas. The replication process does not show 
any repetitive instruction sequence or construction arm. This is 
consistent with [26] as “…the structures replicated via a fission 
process in which highly parallel processing occurs…an initial 
structure would typically grow and then divide, making 
replication very fast”. 

 Figure 7 plots the evolutionary growth of genome size 
together with the increasing normalized fitness for the 
replication of the patch pattern in Figure 2c). Results are 
consistent with [21], where the genomes’ build-up process 
happens in the first phase of evolution and then it shows a 
tendency to optimize and add fewer genes in the second half. 
This self-organizing process is the result of the implemented 
regulation mechanisms for the evolutionary growth of genomes 
(see Section III-A).    

 

 
Fig. 7. Evolved genome size and normalized fitness for the replication of 

structure 2c – patch structure (avg. over 100 runs) 

VII. CONCLUSION 
 In this paper we presented an evolutionary growth of 
genome size where the initial genotype is initialized with a 
single random gene. New genes are added by means of gene 
duplication when the available genes have been optimized. 
This incremental process of genome expansion is inspired by 
biological evolution where different species evolved genomes 
of different lengths. The proposed evolution is implemented 
with an indirect encoding that exploits an instruction-based 
development. The obtained genomes have been shown to be 
more compact and effective compared to a standard CA table 
evolution, where all the regulatory combinations are fully 
specified. The proposed method showed better success rate on 
average for the development problem (development of a given 
structure starting from a zygote) and for the replication 
problem (produce at least three exact copies of a given 
structure). As future work, it may be interesting to optimize 
and reduce the instruction set. This was out of the scope of the 
experiments herein. Another interesting approach would be to 
test the presented method on other computational tasks such as 
the rotation or mirroring of structures.  

 Evolutionary growth of genomes has been shown to be a 
powerful complexification tool for cellular systems with 
indirect encodings. It may be interesting to let the growth 
happen also in the number of available cell types, i.e. no 
boundaries on the state space. Another future direction is to 
introduce instructions that can modify the program itself, as in 
Self-Modifying Cartesian Genetic Programming (SMCGP). 
This would allow the diversification of cells’ programs.  
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