
Evolutionary Growth of Genomes for the
Development and Replication of Multicellular

Organisms with Indirect Encoding

Stefano Nichele and Gunnar Tufte
Norwegian University of Science and Technology
Department of Computer and Information Science

Sem Selandsvei 7-9, 7491, Trondheim, Norway
{nichele, gunnart}@idi.ntnu.no

Abstract — The genomes of biological organisms are not fixed
in size. They evolved and diverged into different species
acquiring new genes and thus having different lengths. In a way,
biological genomes are the result of a self-assembly process
where more complex phenotypes could benefit by having larger
genomes in order to survive and adapt. In the artificial domain,
evolutionary and developmental systems often have static size
genomes, e.g. chosen beforehand by the system designer by trial
and error or estimated a priori with complicated heuristics. As
such, the maximum evolvable complexity is predetermined, in
contrast to open-ended evolution in nature. In this paper, we
argue that artificial genomes may also grow in size during
evolution to produce high-dimensional solutions incrementally.
We propose an evolutionary growth of genome representations
for artificial cellular organisms with indirect encodings. Genomes
start with a single gene and acquire new genes when necessary,
thus increasing the degrees of freedom and expanding the
available search-space. Cellular Automata (CA) are used as test
bed for two different problems: replication and morphogenesis.
The chosen CA encodings are a standard developmental table
and an instruction based approach. Results show that the
proposed evolutionary growth of genomes’ method is able to
produce compact and effective genomes, without the need of
specifying the full set of regulatory configurations.

Keywords — Artificial Development, Evolution, Replication,
Complexification, Cellular Automata, Instruction-based Approach.

I. INTRODUCTION
Artificial Evolutionary and Developmental (EvoDevo)

systems target principles and properties that are present in
natural biological systems, such as embryogenesis, self-
organization, plasticity, genotype-to-phenotype mappings, and
self-repair. A major challenge for EvoDevo is the development
of complex morphologies and structures, potentially at natural
levels of complexity [32]. Biological multi-cellular organisms
made of trillions of cells grow from a single cell which holds
the complete genome [3]. However, organisms of different
species have genomes of different lengths. Speciation highly
relied on a gene duplication mechanism [18]. In fact, in
biological organisms there is a small probability that when a
parental gene is copied, more than a copy may arise, i.e. gene
duplication. As such, biological evolution is an incremental
process that builds up genomes of increasing complexity.

In contrast, artificial systems often rely on direct one-to-one
encodings, i.e. genotype-to-phenotype mapping, where the full
set of genes is mapped to the phenotype entities directly. This
solution has several drawbacks, for instance scaling up the
phenotype resources would imply a larger genotype which
would result in a larger search space. Another possibility is to
open for an indirect encoding, i.e. development or generative
mapping. Such mappings are a necessity when then number of
phonotype entities is large [33]. However, the scalability of
such systems is still an open challenge. In fact, for several
developmental systems [20, 37], it would not be possible to
represent all the possible regulatory combinations in the
genotype. The system designer would need to make
assumption or use complex heuristic to find out a reasonable
genome size, such that it would be large enough to contain a
potential solution [5, 37, 38].

In this paper, we propose a biologically inspired
evolutionary growth of genomes with indirect encoding, which
does not rely on any a priori knowledge on the problem
complexity or required genome size. Genotypes are initialized
with a single gene and genotype size is incrementally evolved
by means of gene duplications. This would guarantee a low
dimensionality of the search space that would, in turn, evolve
increasingly complex solutions and add newly created degrees
of freedom only when needed. The proposed framework is
tested on two different problems: the development of given
patterns starting from an initial seed [9] and the replication of
cellular structures [15]. Self-replication allows reuse of genetic
material, reducing genome size and enabling the production of
complex structures.

Related work was done towards achieving genome size
expansion [6, 12, 14, 17] with variable length genomes, mostly
using direct encodings [10, 34]. Research on complexification
with direct encodings may not be conclusive but the idea of
incremental evolutionary growth of genomes has a potential for
exploration with indirect encodings [32]. With direct
encodings, a variable length genome allows to duplicate a gene
that is mapped to a single phenotypic entity. This would result
in a duplication of the correspondent phenotypic structure
itself. Such approach has been shown to be particularly
successful when modular structures ought to be evolved [7]. In
contrast, with indirect encodings, adding a new gene may have

disruptive effects, since genes have shared and overlapping
regulations. A challenge is to allow the newly added gene
enough time to be incorporated and optimized in the genome.
An important property that allows such optimization is
neutrality [29, 30].

The paper is laid out as follows: section 2 provides
background information on genome expansion and instruction-
based development. Section 3 presents the cellular
developmental model and the framework for evolutionary
growth of genomes. In section 4 the problems under
investigation are described and section 5 presents the
experimental setup. Section 6 provides the experimental results
together with discussion and Section 7 concludes the work.

II. RELATED WORK

A. Growing Genome
The mechanism of genome expansion through gene

duplication played a key role in natural evolution [35, 28].
There is strong evidence that around 38% of the Homo Sapiens
genome is a result of gene duplication [16]. Such process
contributed to the emergence of complex regulatory
mechanisms in gene regulatory networks, providing plasticity
and adaptivity. In the artificial domain, previous work was
done towards using variable length genomes [36] and
achieving genome size expansion [6, 12, 14, 17, 1, 2]. Federici
and Downing [10] investigated neutral gene duplications in a
direct encoding cellular model with environmental chemicals.
Stanley and Miikkulainen [34] introduced NeuroEvolution of
Augmenting Topologies (NEAT), a complexification method
for the incremental evolution of neural network topologies.
Their main goal was to evolve robot controllers with direct
encodings through gene duplications. A CA framework for the
evolutionary growth of genomes has been implemented with
indirect encodings by Nichele and Tufte [21]. The goal was to
evolve trajectories and attractors of different lengths. This
approach has been shown to be suitable to evolve cellular
automata local transition functions starting from a single
neighborhood configuration, being able to scale well when the
search space, the state space or the phenotype resources were
scaled up. As a step forward, we investigate the proposed
framework in [21] with an advanced genotype-to-phenotype
indirect encoding, namely the instruction-based approach.

B. Instruction-based Approach
The idea of evolving instruction-based representations is a

rather old approach [13]. Cartesian Genetic Programming
(CGP) has been introduced by Miller and Thomson [19] for the
evolution of digital circuits by representing a program as a
directed graph. Sipper [31] proposed the evolution of non-
uniform cellular automata with cellular programming, an
evolutionary approach based on CA propagation, NAND and
XOR operations. This has been proven to be computation
universal. Bidlo and Skarvada [4] introduced the Instruction-
Based Development (IBD) for the evolutionary design of
digital circuits. Bidlo and Vasicek [5] exploited IBD for the
development and replication of cellular automata structures.
Even though their approach has been shown to improve the
overall success rate, the number of available instruction was

arbitrarily chosen. IBD allows representing CA transition
functions by means of a sequence of instructions, i.e. a
program, which is executed on local neighborhoods in parallel
and deterministically determines the next state of each cell. In
contrast, a traditional CA local transition function specifies all
the possible neighborhood combinations together with the next
state of the cell being considered. If the number of cell states of
neighborhood size is increased, specifying all the
neighborhoods may become not feasible. Evolutionary growth
of genomes has been used to evolve local transition functions
starting from a single neighborhood configuration [21]. Using
an instruction-based approach removes the problem of
specifying all the combinations in the transition function, but
the problem of determining the number of necessary
instructions to solve a given problem still exists. As such, we
propose an IBD based on evolutionary growth of genome.

III. CELLULAR DEVELOPMENTAL MODEL
The cellular developmental model is based on 2-

dimensional cellular automata, with synchronized cellular
cycle, parallel updates and discrete cell states. For more details
on the model see [21, 24, 23, 22, 25]. A CA can be considered
as a developing organism, where the genome specifications and
gene regulation information control the cell’s growth and
differentiation. The behavior of the CA is represented by the
emerging phenotype, which is subject to size and shape
modifications. The cellular model has cyclic boundary
conditions and uses von Neumann neighborhood (5 neighbors,
i.e. up, down, left, right and centre cell).

A standard table-based CA transition function would
consist of the specification of all the possible neighborhood
configurations, together with the state of the central cell at the
next time-step. This is shown in Figure 1, for a CA with n cell
states. The cell type 0 is defined as the empty state, i.e.
quiescent. The column C(t+1) can be any of the possible cell
states. As such, the table-based representation would consist of
n5 possible neighborhood configurations (with n possible cell
states and 5 neighbors). If a CA transition table ought to be
evolved, with 4 cell states and 5 neighbors, the total number of
different transition functions, i.e. search space, would be 4^4^5
= 41024 = ~ 3.23 x 10616.

Fig. 1. CA model with cyclic boundaries (left), von Neumann neighborhood
(centre), table-based transition function for the CA development.

For the instruction-based approach, each gene in the
genotype would consist of an instruction with a maximum of

Fig. 2. Target structures for the development and replication problems.

two operands chosen among the neighbors, as specified in
Table 1. In our model, there are a total of 16 instructions and
each operand can be one of the five neighbors. As such, the
search space for each instruction is 16x5x5= 400. Evolutionary
growth of genomes is initialized by a single instruction and
grows the program size incrementally. A developmental
genome composed by 5 instructions (as some results in this
paper) would have a search space of 4005= 1.024 x 1013 (many
orders of magnitude less than the traditional method).

TABLE I. THE INSTRUCTION SET FOR THE CELLULAR DEVELOPMENT
PROCESS. N(op1) AND N(op2) REPRESENT TWO CELL STATES IN THE
NEIGHBORHOOD FOR THE TWO OPERANDS OF THE INSTRUCTION. n
REPRESENTS THE NUMBER OF CELL STATES. ALL OPERATIONS ARE

PERFORMED MODULO(n) TO GUARANTEE A PERSITENT RESULT.

Instruction Description Meaning Code
AND N(op1) = N(op1) ˄ N(op2) AND operation 0
OR N(op1) = N(op1) ˅ N(op2) OR operation 1

XOR N(op1) = N(op1) ⊕ N(op2) XOR operation 2

NOT N(op1) = ¬ N(op1) NOT operation 3
INV N(op1) = n – N(op1) Inverse state 4
MIN N(op1) = min (N(op1), N(op2)) Minimum 5

MAX N(op1) = max (N(op1), N(op2)) Maximum 6
SET N(op1) = N(op2) Set value 7
INC N(op1) = N(op1) + 1 Increment 8
DEC N(op1) = N(op1) – 1 Decrement 9

SWAP N(op1) ↔ N(op2) Swap 10
ROR LCR → RLC Rotate right 11
ROL LCR → LCR Rotate left 12

ROU UCD → CDU Rotate up 13
ROD UCD → DUC Rotate down 14
NOP N(op1) = N(op1) No operation 15

The resulting program is executed in parallel on a local
neighborhood copy for each CA cell. For example, if the
program (MIN UP LEFT) (XOR CENTRE UP) is executed, a
local copy for each CA cell’s neighborhood is considered (5
neighbors): UP, RIGHT, DOWN, LEFT, and CENTRE (the
central cell being considered). The first executed instruction is
UP = MIN(UP, LEFT) which updates the UP neighbor. The
second is CENTRE = XOR(CENTRE, UP), which updates the
CENTRE neighbor. At the end of the program, the state of the
CENTRE cell is copied back as the next state (the result of the
transition function).

A. Evolutionary growth of genomes
A conventional Genetic Algorithm (GA) is used for the

evolution of table-based transition functions. For the
instruction-based transition function the genotype information
is composed by a sequence of genes that represent a
developmental program (each gene codes for an instruction
with relative operands). As such, the GA is modified with the
introduction of the following regulation mechanisms:

1. There is an upper bound on the number of genes that can be
added, which coincides with the maximum possible
neighborhoods for the table-based transition function;

2. There is a duplication rate which guarantees that a new
gene is added with a certain probability to each individual
in the population;

3. Added genes are guaranteed time for optimization, before a
new addition can occur. This means that there is a counter
and a threshold which specifies that a genome growth can
occur only after a certain number of generations without
an increase in the overall best fitness in the population
(optimization time threshold). Duplication happens when
there is no room for further genotype optimization;

4. There is an elitism mechanism. This is done to guarantee
genotypes with compact and effective genomes will be
kept in the population no matter what. This enables
speciation and survival of fit individuals with smaller
genomes.

If the four regulation mechanisms hold, a gene addition
occurs. A genotype that consists of n genes at a given
generation acquires a new gene which is an exact copy of a
randomly selected gene already present in the genome. The
selected gene is copied and appended; the genotype will then
consist of n+1 genes.

In the process of selecting individuals, either for offspring
generation or for gene addition, a weighted selection is
implemented with the actual fitness that counts 80% and the
innovation parameter that rewards larger genomes, which
counts 20%. The innovation parameter allows newly added
genes, which most likely result in a fitness-neutral or fitness-
decrease, to be allowed to survive and be optimized. For more
details on the framework for evolutionary growth of genomes,
please refer to [21].

IV. PROBLEMS UNDER INVESTIGATION
A traditional table-based CA evolution is compared to an

evolutionary growth of genomes in terms of genotypes size
(number of necessary genes), success rate and number of
generations. The following two problems were investigated:

1. Morphogenesis: a target structure develops out of a seed (of
non-quiescent type) placed in the centre of the grid, while
all the other cells are in the quiescent state. There is a
maximum number of development steps in which the
target pattern may develop. The size of the grid is the same
as the size of the target structure.

2. Replication: a structure placed in the centre of the grid is to
be replicated in a given number of development steps. At
least 3 replicas of the initial structure are required;

The target structures are represented in Figure 2 and have
been chosen according to widely used examples in literature
[36, 8, 20, 11, 38]. In particular, they are chosen to cover a
variety of properties, complexities and characteristics of
developmental systems, such as self-organization,
modularization, and diversification. The identified classes are:
2a) mosaic pattern (5x5 with 2 cell types), 2b) border pattern
(6x6 with 2 cell types), 2c) patch pattern (6x6 with 2 cell
types), 2d) point-symmetric pattern (5x5 with 2 cell types), 2e)
shifted symmetry pattern (7x7 with 4 cell types).

Figure 3a) represents the initial seed for the morphogenesis
problem. In the target structures to be replicated or developed,
the available number of cell types is set to 2 or 4, as
represented in Figure 3b), which are mapped to the cell types
in Figure 2.

For the morphogenesis problem, candidate solutions are

evaluated with the maximum value of all the partial matches in
all the development steps. For the replication problem, the
whole grid is inspected to find perfect replicas of the target
structure in each development step and the 3 top matches
(perfect or partial) are considered. A bonus is given if a perfect
replica is found. The used fitness function for the replication
and development problem are similar to those described in [5].

V. EXPERIMENTAL SETUP
In both test cases (morphogenesis and replication),

transition functions are evolved to solve the target problem
(develop or replicate one of the structures in Figure 2). All the
experiments are executed for 100 independent GA runs. Table-
based rules and program-based rules are evolved for a
maximum of 10000 generations, with standard GA and
evolutionary growth of genomes, respectively. If a solution has
not been found in 10000 generations, the experiment is
considered not successful. The population of genotypes, i.e.
transition functions, consists of 30 individuals for the
development problem and 16 individual in the replication
problem. Each CA genotype rule is executed and evaluated for
30 development steps. The GA selection process uses

proportionate selection base 4 (four individuals are picked
randomly and the best among them is selected). In addition,
one elite is always transferred to the offspring. For the standard
table-based transition function, all the possible neighborhood
configurations are explicitly represented, together with the
correspondent next value of the cell under consideration. The
chosen mutation rate for each of the next cells’ states is 0,02
for the structures with 2 cell types and 0,066 for the structures
with 4 cell types (see Figure 2). For the program-based
transition function, the genotype size grows along evolution.
Each of the genes represents an instruction, i.e. an instruction
code and two operands. As such, 2 mutations each genotype,
i.e. program, are performed. Both operation codes and
operands can be selected for mutation, within the correct range.
Crossover is not suitable for our experiments (due to variable
length genomes) and thus it is not included.

A. Morphogenesis
For the morphogenesis problem, the target patterns are the

following (from Figure 2):

• 2a) mosaic pattern of size 5x5 with 2 cell types;
• 2b) border pattern of size 6x6 with 2 cell types;
• 2c) patch pattern of size 6x6 and 4 cell types (well known

as the French Flag problem [27]);
• 2d) symmetric pattern of size 5x5 and 2 cell types.

In all the cases, the initial CA state is a zygote cell of type
1, as represented in Figure 3a and all the other cells in the grid
are of type 0 (quiescent). The CA size is set to the target
pattern size. Genomes for the table-based transition function
are initialized by listing all the possible neighborhood
configurations and the next value of the considered cell
randomly generated among the available cell types. As such,
the total number of genes is 25 = 32 (with 2 cell types and 5
neighbors) and 45 = 1024 (with 4 cell types and 5 neighbors).

For the program-based transition function, the genomes are
initialized with a single randomized gene (random instruction
code and operands). Genomes grow during evolution using the
described evolutionary growth of genomes framework with the
following regulation parameters:

1. Genes number upper bound, i.e. maximum program length,
of 32 and 1024 instructions for 2 and 4 cell types’
structures respectively. This coincides with the total
number of neighborhood combinations for a classical
table-based CA;

2. Duplication rate, i.e. rate at which a gene can be added, of
1/(population size). On average, one out of the 30
genomes acquires a new gene, if the following point is
true;

3. Optimization time threshold, i.e. number of generations
without overall fitness increase, of 30 generations for
structures 2a) and 2d), 100 generations for structures 2b)
and 2c);

4. Elitism of 1 individual in the population which guarantees
that the fittest survives no matter what.

Fig. 3. a) initial state for the morphogenesis problem. b) available cell types

B. Replication
For the replication problem, the structures to be replicated

are (from Figure 2):

• 2a) mosaic pattern of size 5x5 with 2 cell types, in a grid of
size 27x27 cells (enough space to replicate on all sides);

• 2c) patch pattern of size 6x6 and 4 cell types (well known
as the French Flag problem [27]), in a grid of size 30x30
cells;

• 2d) symmetric pattern of size 5x5 and 2 cell types, in a grid
of size 27x27 cells;

• 2e) shifted symmetry pattern of size 7x7 and 4 cell types, in
a grid of size 33x33 cells.

The minimum number of wanted replicas is set to 3 and
each replica has to have a border of quiescent cells (type 0) that
surrounds the structure. The initialization of genomes is the
same as for the morphogenesis problem and the evolutionary
growth of genomes has the following parameters:

1. Genes number upper bound of 32 and 1024 instructions for
2 and 4 cell types’ structures respectively;

2. Duplication rate of 1/(population size = 16);

3. Optimization time threshold of 10 generations;

4. Elitism of 1 individual.

VI. RESULTS

A. Morphogenesis
The results for the morphogenesis problem are summarized

in Table II, where the traditional table-based evolution is
compared with the instruction-based growing evolution for
each of the target structures to be developed.

As expected, the growing evolution function has a much
higher success rate.

TABLE II. MORPHOGENESIS (AVG. 100 RUNS)

Fig.
Table-based Evolution

Success
Rate %

Genotype Size (# genes)
Max Avg Min StDev

Generations
Avg. StDev.

2a 58 32 32 32 0 1336 2294

2b 69 32 32 32 0 2254 2501

2c 19 1024 1024 1024 0 5002 3157

2d 23 32 32 32 0 2668 2942

Fig.
Instruction-based Growing Evolution

Success
Rate %

 Genotype Size (# genes)
Max Avg Min StDev

Generations
Avg. StDev.

2a 98 31 14.34 5 8.4318 1257 1152

2b 98 31 15.28 5 7.0973 3956 1690

2c 46 46 19.65 6 9.2236 6424 1922

2d 100 13 5.25 4 1.4097 285 108

 Looking at the evolved genotype size, the table-based
evolution has fixed number of genes, defined by the possible
neighborhood configurations. The growing evolution function
is able to achieve optimized genomes which are compact and
effective. In particular, the patch structure 2c) would need 1024
genes for the table-based evolution whether it need only 19.65
genes on average for the growing evolution function. The
differences in genotype size between table-based evolution and
instruction-based growing evolution are significant (Student t-
test, p<0.0001) in all the analyzed cases. Moreover, the
necessary number of generations that evolution needs to find
solutions is not larger for the growing evolution function. The
difference in the average number of generations is not
statistically significant (Student t-test). Figure 4 shows a bar
plot where the differences in genotype size are summarized for
the morphogenesis problem. In conclusion, it is possible to
notice that for structures with 2 cell types, the average number
of necessary genes is halved. For structure 2c) which has 4 cell
types the shrinking factor is more accentuated (y-axes has log.
scale). An example of evolved solution is shown in Figure 8.

Fig. 4. Average genotype size for the morphogenesis problem. Table-based
evolution in blue and growing evolution in red.

B. Replication
Table III summarizes the results for the replication

problem. Again here the growing evolution function has higher
success rate, being able to achieve solutions for all structures
with a success rate of 100%.

TABLE III. REPLICATION (AVG. 100 RUNS)

Fig.
Table-based Evolution

Success
Rate %

Genotype Size (# genes)
Max Avg Min StDev

Generations
Avg. StDev.

2a 85 32 32 32 0 775 1393

2c 8 1024 1024 1024 0 4331 3576

2d 1 32 32 32 0 8259 0

2e 0 1024 1024 1024 0 - -

Fig.
Instruction-based Growing Evolution

Success
Rate %

Genotype Size (# genes)
Max Avg Min StDev

Generations
Avg. StDev.

2a 100 7 2.93 2 1.1742 39.7 19.6

2c 100 6 2.84 2 1.1166 39.6 22.3

2d 100 8 3.06 2 1.2128 41.8 20.5

2e 100 5 1.38 1 0.8012 9.4 10.7

Tim
e, D

evelopm
ent Steps

Fig. 5. Exam
ples of evolved solutions for the replication of the structures 2d, 2c and 2e. Three perfect replicas are required and each of them

 is a replicator itself.

Fig. 6. Average genotype size for the replication problem. Table-based
evolution in blue and growing evolution in red.

 With table based-evolution, the only structure with a high
success rate (85%) is 2a). For structure 2c), solutions were
found only 8% of times and for structure 2d) one a single
solution out of 100 runs. For structure 2e) no solution was
found by the table-based evolution. Analyzing the average
genotype size for both methods, it is evident that growing
evolution is able to evolve particularly optimized genomes,
being able to evolve in most cases the xor-based (addition
followed by modulo division) replicator. As such, having a
search space that grows incrementally makes it possible to add
degrees of freedom during evolution only when needed. This
can be observed by the number of needed generations to find
solutions, which is much lower for the growing evolution
function, which performs better both in terms of overall
genome size and needed generations. The differences are
statistically significant (Student t-test, p<0.0001) in all cases (t-
test not calculated when less than 2 solutions were available,
with structure 2d) and 2e) for the table-based evolution).

 Figure 6 shows a bar graph comparison of the evolved
genome size for a full table (table-based evolution function)
and growing evolution, where it is possible to notice
graphically the big difference in number of used genes. Four
examples of evolved solutions for the replication of structures
2d, 2c and 2e are shown if Figure 5. The first two examples
show two different strategies for the replication of the
symmetric structure in Figure 2d. In both cases, the result after
9 development steps is 3 perfect copies of the initial structure.
The third example shows the replication of the patch structure
in Figure 2d (also known as the French Flag problem). The last
example plots the replication of the shifted symmetric structure
in Figure 2e, where 25 development steps are necessary to
obtain 3 perfect replicas. The replication process does not show
any repetitive instruction sequence or construction arm. This is
consistent with [26] as “…the structures replicated via a fission
process in which highly parallel processing occurs…an initial
structure would typically grow and then divide, making
replication very fast”.

 Figure 7 plots the evolutionary growth of genome size
together with the increasing normalized fitness for the
replication of the patch pattern in Figure 2c). Results are
consistent with [21], where the genomes’ build-up process
happens in the first phase of evolution and then it shows a
tendency to optimize and add fewer genes in the second half.
This self-organizing process is the result of the implemented
regulation mechanisms for the evolutionary growth of genomes
(see Section III-A).

Fig. 7. Evolved genome size and normalized fitness for the replication of

structure 2c – patch structure (avg. over 100 runs)

VII. CONCLUSION
 In this paper we presented an evolutionary growth of
genome size where the initial genotype is initialized with a
single random gene. New genes are added by means of gene
duplication when the available genes have been optimized.
This incremental process of genome expansion is inspired by
biological evolution where different species evolved genomes
of different lengths. The proposed evolution is implemented
with an indirect encoding that exploits an instruction-based
development. The obtained genomes have been shown to be
more compact and effective compared to a standard CA table
evolution, where all the regulatory combinations are fully
specified. The proposed method showed better success rate on
average for the development problem (development of a given
structure starting from a zygote) and for the replication
problem (produce at least three exact copies of a given
structure). As future work, it may be interesting to optimize
and reduce the instruction set. This was out of the scope of the
experiments herein. Another interesting approach would be to
test the presented method on other computational tasks such as
the rotation or mirroring of structures.

 Evolutionary growth of genomes has been shown to be a
powerful complexification tool for cellular systems with
indirect encodings. It may be interesting to let the growth
happen also in the number of available cell types, i.e. no
boundaries on the state space. Another future direction is to
introduce instructions that can modify the program itself, as in
Self-Modifying Cartesian Genetic Programming (SMCGP).
This would allow the diversification of cells’ programs.

REFERENCES
[1] L. Altenberg. Evolving better representations through selective genome

growth. In Evolutionary Computation, 1994. IEEE World Congress on
Computational Intelligence., Proceedings of the First IEEE Conference
on, pages 182–187. IEEE, 1994.

[2] L. Altenberg. Genome growth and the evolution of the genotype-
phenotype map. In W. Banzhaf and F. H. Eeckman, editors, Evolution
and Biocomputation, volume 899 of Lecture Notes in Computer Science,
pages 205–259. Springer, 1995.

6 1 3 3 3 1 8 3 4 11 4 3 6 3 0 2 4 3 1 1 4 2 1 4 6 4 1 15 4 3 5 2 0 1 2 4 13 4 0 0 2 0

Fig. 8. Example of evolved program for the development of structure 2c – patch structure. After development step 9 the structure remains stable (point
attractor). The program is composed by 14 instructions (one instruction each gene) in the following standard: INSTRUCTION CODE, OPERAND 1,

OPERAND 2 (if the operand is not applicable for the given instruction, the value is ignored). For instruction codes and relative meaning see Table 1, the
operands are defined as follows: UP = 0, RIGHT = 1, DOWN = 2, LEFT = 3, CENTRE = 4.

[3] E. Bianconi, A. Piovesan, F. Facchin, A. Beraudi, R. Casadei,
F. Frabetti, L. Vitale, M. C. Pelleri, S. Tassani, F. Piva, S. Perez-
Amodio, P. Strippoli, and S. Canaider. An estimation of the number of
cells in the human body. Annals of Human Biology, 0(0):1–9, 2013.
PMID: 23829164.

[4] M. Bidlo and J. Skarvada. Instruction-based development: From
evolution to generic structures of digital circuits. KES Journal,
12(3):221–236, 2008.

[5] M. Bidlo and Z. Vasicek. Evolution of cellular automata using
instruction-based approach. In Evolutionary Computation (CEC), 2012
IEEE Congress on, pages 1–8, 2012.

[6] D. Cliff, P. Husbands, and I. Harvey. Explorations in evolutionary
robotics. Adaptive Behaviour, 2(1):73–110, 1993.

[7] J. Clune, J.-B. Mouret, and H. Lipson. The evolutionary origins of
modularity. Proceedings of the Royal Society B: Biological Sciences,
280(1755), 2013.

[8] A. Devert, N. Bredeche, and M. Schoenauer. Robustness and the halting
problem for multicellular artificial ontogeny. IEEE Trans. Evolutionary
Computation, 15(3):387–404, 2011.

[9] R. Doursat, H. Sayama, and O. Michel. Morphogenetic Engineering:
Toward Programmable Complex Systems. Springer Publishing
Company, Incorporated, 2013.

[10] D. Federici and K. Downing. Evolution and development of a
multicellular organism: Scalability, resilience, and neutral
complexification. Artificial Life, 12:2006, 2006.

[11] P. C. Haddow, G. Tufte, and P. van Remortel. Shrinking the genotype:
L-systems for ehw? In Y. Liu, K. Tanaka, M. Iwata, T. Higuchi, and
M. Yasunaga, editors, ICES, volume 2210 of Lecture Notes in Computer
Science, pages 128–139. Springer, 2001.

[12] I. Harvey, P. Husbands, and D. Cliff. Seeing the light: Artificial
evolution, real vision, 1994.

[13] J. R. Koza. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[14] J. R. Koza. Gene duplication to enable genetic programming to
concurrently evolve both the architecture and work-performing steps . . .
In IN IJCAI-95 PROCEEDINGS OF THE FOURTEENTH
INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL
INTELLIGENCE, pages 734–740. Morgan Kaufmann, 1995.

[15] C. G. Langton. Self-reproduction in cellular automata. Physica D,
10D(1-2):135–44, 1984.

[16] W.-H. Li, Z. Gu, H. Wang, and A. Nukrutenko. Evolutionary analyses
of the human genome. Nature, (409):847–849, 2001.

[17] K. Lindgren and J. Johansson. Coevolution of strategies in n-person
prisoner’s dilemma. Evolutionary Dynamics-Exploring the Interplay of
Selection, Jan. 2001.

[18] A. P. Martin. Increasing genomic complexity by gene duplication and
the origin of vertebrates. The American Naturalist, 154(2):pp. 111–128,
1999.

[19] J. Miller and P. Thomson. Cartesian genetic programming. In R. Poli,
W. Banzhaf, W. Langdon, J. Miller, P. Nordin, and T. Fogarty, editors,
Genetic Programming, volume 1802 of Lecture Notes in Computer
Science, pages 121–132. Springer Berlin Heidelberg, 2000.

[20] J. F. Miller and W. Banzhaf. Evolving the program for a cell: from
french flags to boolean circuits. In S. Kumar and P. J. Bentley, editors,
On Growth, Form and Computers. Academic Press, October 2003.

[21] S. Nichele, A. Giskeødegård, and G. Tufte. Evolutionary Growth of

Genome Representations on Artificial Cellular Organisms with Indirect
Encodings. SUBMITTED to Artificial Life, MIT Press, ??, 2014.

[22] S. Nichele and G. Tufte. Genome parameters as information to forecast
emergent developmental behaviors. In Unconventional Computation and
Natural Computation, pages 186–197. Springer, 2012.

[23] S. Nichele and G. Tufte. Evolution of incremental complex behavior on
cellular machines. In Advances in Artificial Life, ECAL, volume 12,
pages 63–70, 2013.

[24] S. Nichele and G. Tufte. Measuring phenotypic structural complexity of
artificial cellular organisms. In Innovations in Bio-inspired Computing
and Applications, pages 23–35. Springer, 2014.

[25] S. Nichele, H. Wold, and G. Tufte. Investigation of genome parameters
and sub-transitions to guide evolution of artificial cellular organims. In
Proceedings of the 16th European Conference on the Applications of
Evolutionary Computation (EvoApplications 2014), 2014.

[26] Z. Pan and J. A. Reggia. Computational discovery of instructionless
self-replicating structures in cellular automata. Artificial Life, 16:39–63,
2010.

[27] O. U. Press. Principles of Development. Wolpert, L., 1998.
[28] O. S. Evolution by Gene Duplication. Allen and Unwin, London, UK,

1970.
[29] R. Shipman. Genetic redundancy: desirable or problematic for

evolutionary adaptation? In Artificial Neural Nets and Genetic
Algorithms, 1999. Proceedings of the International Conference on,
pages 337–344. Springer-Verlag, 1999.

[30] R. Shipman, M. Shackleton, M. Ebner, and R. Watson. Neutral search
spaces for artificial evolution: a lesson from life. In Artificial Life VII,
Proceedings of the Seventh International Conference on Artificial Life,
pages 162–169. MIT Press, 2000.

[31] M. Sipper. Evolution of Parallel Cellular Machines, The Cellular
Programming Approach, volume 1194 of Lecture Notes in Computer
Science. Springer, 1997.

[32] K. O. Stanley and R. Miikkulainen. Achieving high-level functionality
through evolutionary complexification. In Proceedings of the AAAI-
2003 Spring Symposium on Computational Synthesis, Stanford, CA,
2003. AAAI Press.

[33] K. O. Stanley and R. Miikkulainen. A taxonomy for artificial
embryogeny. Artificial Life, 9(2):93–130, 2003.

[34] K. O. Stanley and R. Miikkulainen. Competitive coevolution through
evolutionary complexification. Journal of Artificial Intelligence
Research, 21:63–100, 2004.

[35] J. S. Taylor and J. Raes. Duplication and divergence: The evolution of
new genes and old ideas. Annual Review of Genetics, 38(1):615–643,
2004. PMID: 15568988.

[36] M. A. Trefzer, T. Kuyucu, J. F. Miller, and A. M. Tyrrell. On the
Advantages of Variable Length GRNs for the Evolution of Multicellular
Developmental Systems. Evolutionary Computation, IEEE Transactions
on, 17(1):100–121, Feb. 2013.

[37] G. Tufte. Discovery and investigation of inherent scalability in
developmental genomes. In G. Hornby, L. Sekanina, and P. C. Haddow,
editors, ICES, volume 5216 of Lecture Notes in Computer Science,
pages 189–200. Springer, 2008.

[38] G. Tufte and J. Thomassen. Size matters: Scaling of organism and
genomes for development of emergent structures. In Genetic and
Evolutionary Computation (GECCO), ACM conference series. ACM,
2006.

