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Abstract 

This document represents the final essay for the PhD course IT8008 – Sub-symbolic AI 

Methods, which is part of my doctoral study program. This report aims to give an extensive 

coverage of the state-of-the-art in adaptive-A%%-controlled intelligent agents. 

The human brain is a very efficient computational machine. Yet “slower” that a standard 

computer, it processes a huge amount of information in a highly parallelized and optimized 

way. Thus, the motivation of studying Artificial %eural %etworks is that the brain can be 

considered as a model for creating intelligent machines capable of simulating the structure 

and behavior of a biological neural networks. Some tasks that may be trivial for a 3 years old 

baby can be very challenging for a computer (image and pattern recognition, associations, 

perceptions, spatial and temporal consciousness). One solution is to take inspiration from 

nature in order to reproduce the same behavior in machines. 

 

1  Introduction 

The human brain is one of the most complex and fascinating organs. Unlike other parts in our 

body, it is more than just a biochemical machine and its dynamics are still far beyond from 

being understood. The human central nervous system has been studied for hundreds of years 

but only recently neural models have been proposed.  

One of the earliest work dates back to 1943, when McCullock and Pitts [23] introduced the 

first model of artificial neuron that could be build and simulated using electric circuits. Figure 

1(a) shows a typical nerve cell while Figure 1(b) represents McCullock and Pitts’ artificial 

neuron’s model, where every neuron is a threshold unit with excitatory and inhibitory 

synapses. It fires an impulse y along its axon at time n+1 if the weighted sum of its inputs 

x1,...,xm and weights w1,...,wm at time n exceeds the threshold value θ. 

 

FIGURE 1:  (a) a nerve cell; (b) McCullock and Pitts’ artificial neuron [2]. 
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In 1949 Hebb wrote the book “The Organization of Behaviour” [30]. He supported 

McCullock and Pitts’ idea, describing that every time a neural path is used, it becomes 

stronger. During the ‘50s a lot of research on neural networks has been conducted, 

culminating with the introduction of the first practical artificial neural network in 1958 by 

Rosenblatt: the perceptron [24]. Later, in 1969, Minsky and Papert [29] showed the 

weaknesses of the perceptron and, specifically, that data must be linearly separable. It was not 

possible to solve a simple XOR, even using multi-layered perceptrons. In the meantime, in 

1959 and 1960, Wildrow and Hoff developed ADALINE and MADALINE, the first examples 

of neural networks applied to real problems, such as to eliminate echoes on phone lines.  

In the following years, research on neural networks slowed down, most likely because of the 

high expectations in the collective imagination, driven by science fiction books and movies 

(Asimov’s books, the novel “2001: a space odyssey”, etc.), but not comparable practical 

results. Only in 1982, the field was revitalized by a scientific paper presented by Hopfield, 

where he showed how to use neural networks to solve dynamic problems, giving also a strong 

mathematical analysis. Japan and United States restarted immediately with research in the 

field of AI and neural networks. This new impulse led to the presentation of the back-

propagation algorithm as learning technique for multi-layer perceptrons (in 1986 by 

Rumelhart, Hinton and Williams).  

Nowadays, artificial neural networks (ANNs) have several applications, such as language 

processing, image compression, text and pattern recognition, signal processing, systems 

control and robotics. The main challenge is to build autonomous and “intelligent” robots 

using ANNs, simulating the behaviour of a brain. Simulating the whole human brain is still 

not feasible with the current technology, considering that it contains 100 billion neurons and 

10,000 times as many connections.  

Computational neuroscientists, such as Sebastian Seung, are trying to create a Connectome 

[11], a complete map of the neurons in a brain and their interactions. They think that 

experiences, memories and emotions are shaping the connectome continuously, creating new 

links and causing the old ones to die. These biological principles could be applied in the 

future to create more accurate models of artificial brains [12] and, maybe, to “download” a 

real brain in an artificial one or vice versa.  

Looking beyond the horizon, some scientists think that biological systems can remain 

unchanged for several hundred years at cryogenic temperatures, also brains. Paying around 

100,000 dollars it is possible to have your brain frozen after death and keep it stored in a 

nitrogen tank in the US [8]. It may be possible, with a future technology, to unfreeze the brain 

and recover the memory. Is this only a crazy idea or it will be possible to cheat death?    



2  Glossary: from Neurons to Robots

Neuron: a nerve cell is called neuron. It is basically a biological cell that processes 

information. A neuron receives signals from other neurons through his dendrites and 

elaborates the data in the soma, the cell body. The generated signals are then transmitted 

through the axon which eventually branches into different filaments connected to dendrites of 

other neurons. These interconnections are called synapses

propagated from one neuron to another, some chemicals called neurotransmitters are released 

to enhance or inhibit the signal. The strength of the synapses can be affected by 

activity in a sort of learning process. This memory

the human memory. A graphical representation of a neuron is given in Figure 1(a).

Biological neural network: it is a group of interconnected neurons. One ex

cerebral cortex.  

Artificial neural network: “a computer program designed to model the human brain and its 

ability to learn tasks” [28]. An ANN 

represented in Figure 1(b), where the activation f

combination, a sigmoid or a Gaussian.

counterparts of learning an association between some input and output values, based on 

experience, developing a sort of memory associa

shown in Figure 2. 

 FIGURE 2:  different types of activation functions

Adaptive ANN: the magic word is adaptation, the ability to change the behaviour in dynamic 

environments. Adaptation is based on learning 

structure and connection weights online to perform a specific task.

behaviour of the ANN does not have to be programmed with specific rules. It is the network 

itself that learns the underlying rules from experience.

Intelligent Agent: in artificial intelligence, an agent is an entity that reacts to some perceptions 

from the environment and decides which action to perform in order to achieve a specific task. 

Intelligent agents (IAs) may be able to learn how to behave and to use this knowledge to be 

autonomous. A typical representation of a simple intelligent agent is show
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FIGURE 3: example of a simple intelligent agent. 

Adaptive-ANN-controlled intelligent agents: a category of intelligent agents where the 

association between perception and reaction is governed by an artificial neural network that is 

adaptive and thus can learn. This kind of IA is widely used for robots controllers. 

 

3  Formal Definition 

An artificial neural network (ANN) is a collection of interconnected neurons. Input neurons 

receive input signals from the environment and deliver it through their weighted links to the 

following neurons. In some cases, there are some neurons that are not connected with the 

external environment. These units are also referred as hidden neurons [9]. The signals travel 

along the different layers of the network, eventually reaching output neurons that deliver 

signals to the environment. Each signal travels independently from other signals through the 

different weighted links and every single neuron can update its state in parallel. The network 

architecture is usually separated in layers, as shown in Figure 4. 

 

 

 

 

 

  

FIGURE 4: layer architecture of an artificial neural network [9]. 
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When a signal passes through a connection, its value is reinforced or reduced by the link’s 

weight. The output signal is usually calculated with the equation (1). 

�� = ∑  � ( �	 ∗  ��	 )
	��                 (1) 

The function �  may take into account a threshold θ (also called bias) that represents a level 

beyond which a neuron becomes active. Commonly used output functions are the Heaviside 

function (2), the linear function (3), and the sigmoid function (4), where k is a constant value. 

�(�) =  �  �            ��������� 
�            ��  � � �      �               (2) 

�(�) =  ��                 (3) 

�(�) =  �

��� !"                  (4) 

Every network is defined by the number of neurons and their interconnections. The direction 

of the connections differentiates the ANNs into two groups:  

• Feed-forward networks: the signals travel from the input layer to the output layer and 

no loops can occur. 

• Feed-back networks (or recurrent networks): the dynamics of the network are more 

complex because there may be connections among neurons on the same layer or to a 

previous layer; the signals can travel backwards creating loops. 

In feed-forward networks, for every input set one single output set is produced, independently 

from the previous state of the network (memory-less). On the other hand, with recurrent 

networks, there may be a sequence of outputs, each one dependent on the previous state of the 

network (dynamic system). 

In order to let the artificial neural network compute a specific task, every connection has to be 

associated with a weight. This operation cannot be performed manually (the network cannot 

be “programmed”). What is needed is a learning process that helps the network to learn and 

update the values of the weights from experience. The mechanism of updating weight is 

called leaning rule. There are four main types of learning strategies: 

• Supervised learning: the weights are learned from an example set, calculating the 

difference between the desired and the obtained result. Once the network is trained, it 

can be utilized to solve the assigned task. The number of training samples plays an 

important role, too few patterns may cause over-fitting, where the network performs 

well for a specified training data-set but fails for independent test patterns. 
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• Unsupervised learning: there is no teacher telling the network which is the correct 

answer for a specific input. Weights are modified by the network itself that tries to 

find the underlying properties of the data, finding patterns, correlations and 

similarities. 

• Hybrid learning: a combination of the two previous methods, where some weights are 

updated using the first strategy and others using the second. 

• Reinforcement learning: it is a special case of supervised learning. The difference is 

that the expected output is unknown and the only information available is whether the 

actual output is correct or not.  

 

4  Adaptation 

Adaptability of the artificial neural network is one of the most important properties. It gives 

the ability to change the network’s behavior to respond to changes in the environment [14]. 

Since the network architecture is determined by its topology, connectivity and transfer 

function in each node, an ANN can adapt using different techniques: 

• Adaptation by parameter adjustment 

• Adaptation by neuronal property modification 

• Adaptation by structure modification 

Each different type of adaptation can be achieved in many ways. The most common strategies 

are presented in the following paragraphs. 

 

4.1 Adaptation by parameter adjustment 

The most important parameters in a neural network are the connection weights. In order to 

adjust the weights, there are different approaches, depending on the learning style (supervised 

and unsupervised) and several learning rules are presented in literature. The most common 

rules are: 

• Hebbian learning rule; 

• Delta rule; 

• Backopropagation. 

A description of each learning rule is given in the following sub-sections. 
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4.1.1 Hebbian Learning Rule 

Observing the behavior of the nervous system, Hebb in 1949 theorized that if two connected 

neurons are active together, the weight of their connection becomes stronger [26]. For an 

artificial neural network, this means that the amount of change in a connection (∆�) is: 

∆��	 =  $ ∗  ��  ∗  �	                 (5) 

This value is proportional to the activation values of the pre-synaptic (x) and post-synaptic (y) 

neurons, mitigated by a learning rate ($).   

The Hebbian learning rule is mostly used with unsupervised learning strategies [16]. With 

supervised learning, the weights are modified during the training phase and once the training 

is finished, during the testing phase the weight update can be a problem. 

 

4.1.2 Delta Rule 

In supervised learning the adopted strategy aims to change the weights in order to minimize 

the error between the expected and the actual result [22]. If there is only one layer of 

connections such strategy is referred as Delta rule. The training rule can be described by the 

following function: 

∆��	 =  $ ∗ (%� −  ��)  ∗  �	                (6) 

where t represents the desired response and (t – y) is the produced error (δ).  

 

4.1.3 Backpropagation 

The described delta rule can be applied only if the input vectors are linearly separable. If the 

inputs are nonlinearly separable, a hidden layer has to be introduced in order to recode the 

input vectors. Moreover, a nonlinear function has to be used. This method is called 

generalized delta rule or backpropagation (BP). It consists on the propagation of the delta 

error on the output neurons back to the hidden layer [3]. The used non linear function is the 

sigmoid.  

With backpropagation, the training patterns are given in input randomly many times and the 

weights are modified after every presentation of the patterns. The error function (denoted by E 

in Figure 5), often calculated as the mean square error between the desired and obtained 

results, is minimized through gradient descent. The gradient represents the direction of 
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maximum growth of the cost function. Since the goal is to minimize it, it is necessary to move 

towards the opposite direction. The error function is a n-dimensional surface, where the n-

dimensions corresponds to the number of synaptic weights (w) and the gradient is the tangent 

to the surface, defined by a vector of partial derivates of the function in respect to each 

weight. 

 

 

 

 

 

 

 

FIGURE 5: example of gradient descent. If the initial learning position is ��
� and the error has o be minimized 

in the direction towards �∗, the gradient is the tangent and the slope is represented by the derivate in that point. 

Theoretically, the function E forms a hyper-surface in the n-dimensional space with 

dimensions w = (wi1,wi2, ..., win) and it has a minimum at a point w
*
 in the weight space, 

where partial derivate of E with respect to vector w is zero. 

Following the steepest slope not always has the desired result. In fact, it is possible to stick in 

local minimum. This is shown if Figure 5, starting from ��
'. A possible solution is to use 

momentum to avoid stagnation in local minima, adding inertia to the movement of the 

network in the error space. 

  

4.1.4 Adaptive Resonance Theory 

During online learning, it is important that the network adapts to new patterns without losing 

the accuracy on already learned information. In other words, the network has to show two 

contrasting properties: stability (ability to remember stored information) and plasticity (ability 

to adapt to new information). In 1987, Carpenter and Grossberg presented a technique called 

Adaptive Resonance Theory (ART) [17]. It is a hybrid strategy that separates the network in 

two parts, the gain network (F1) and the reset network (F2), as shown in Figure 6. Neurons in 
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F1 are fully connected to neurons in F2 and vice versa. These two layers of neurons differ. In 

fact the neurons in F2 adopt the strategy “winner-takes-all”. Inputs are connected to layer F1 

and a category is chosen and presented to F2.  Then F2 sends back a signal called expectation 

to F1. If the network fails to resonate with the expectation signal then the input is a new 

uncategorized pattern which is associated to a new category (a neuron in F2) and the weights 

are adjusted accordingly to recognize also the new group. 

 

 

 

 

 

 

 

 

FIGURE 6: Adaptive Resonance %etwork (ART) diagram [15]. 

 

4.2 Adaptation by neuronal property modification 

The word learning in the context of neural networks often refers at the connection weight 

modifications or, in other words, at the axon and synaptic level. The neuron itself, the 

nucleus, is considered as a passive element that processes information in a repetitive way. 

However, it is possible to include the neuron in the learning process, modifying the computed 

function inside the neuron. This is referred in literature as temperature modification [18]. As 

weights are optimized reducing an error function, the same could be done in order to 

minimize the temperature error inside the neuron. The temperature property is strictly related 

to the sigmoid function in each neuron and, in particular, to the shape and slope of the 

sigmoid curve. These parameters can be also changed during the learning process.  

Another possibility is to use a more complex neuron with a different structure that uses a 

multivariate activation function. In this model, inputs in each neuron are not received through 
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a single connection but through N terminals (or dimensions) and the activation function is 

defined as a N-dimensional hyper-surface [19]. The learning process is then governed by the 

same rules as in backpropagation.  

 

 

 

 

 

FIGURE 7: Multidimensional neuron diagram with % input terminals. Adapted from [19]. 

 

4.3 Adaptation by structure modification 

In this strategy, what changes is the structure of the network instead of the learning rules. 

Several studies have been conducted on adaptation by structure modification. Here, two 

relevant implementations are presented. 

 

4.3.1 Adaptive modification of hidden layer in RBF network 

Radial Basis Function Networks (RBFNs) are particular neural networks where neurons in the 

hidden layer use radial basis functions as activation functions while the neurons in the input 

and output layers use linear functions. Such networks are mostly used for classification and 

pattern recognition problems. The number of neurons in the hidden layer represents the 

number of clusters in a multi-dimensional space and thus, it can be kept variable and modified 

online, in order to adapt to the characteristics of the input data [20]. The calculation of the 

cluster centroid can be determined using different clustering techniques, such as k-means, 

fuzzy logic clustering, hierarchical agglomerative clustering method (HACM) and so on. 

 

4.3.2 Evolving connectionist systems 

Kasabov [21] developed an adaptive leaning technique for speech recognition, based on the 

online modification of the network topology. Evolving Connectionist System (ECOS) starts 
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with a skeletal neural network and adaptively update the network structure in response to the 

input data, adding or removing input and output nodes. It uses a hybrid strategy (supervised 

and unsupervised) to allocate nodes from the input data, behaving as a “self-programming” 

device.  

 

5  Evolutionary ANNs 

Learning is not the only form of adaptation that can be used. Evolutionary algorithms can be 

also utilized to optimize connection weights, network structure modelling, learning rules, 

input feature selection, weight initialization, etc.  

 

5.1 Evolutionary algorithms 

Evolutionary algorithms (EAs) are a group of stochastic optimization algorithms based on 

natural principles. They are able to explore a huge solution-space in a clever manner, finding 

an optimal solution in a reasonable time. They are based on the concept of natural evolution, 

where the genotype represents the genetic instructions and the phenotype is the organism that 

emerges from a process called morphogenesis, which consists of the interpretation of the 

genotype in a specific environment.  

The genotype is usually a very large set of instructions and each one is triggered and executed 

under specific conditions. In other words, the phenotype is the result of a development 

process which is a nonlinear function of the genotype. For this reason, it is very difficult to 

predict the specific phenotype that will emerge from a given genotype. It is also very unlikely 

to understand which modification should be done on the genotype in order to change a 

characteristic in the phenotype. The only method available is to try and check the results. This 

is what is called evolution by natural selection.  

In the context of neural networks, the components that we want to evolve (learning rules, 

weights, network structure) have to be mapped into artificial chromosomes that are subject to 

the evolution process and evaluated through a fitness function. High ranked elements then 

have more chances of being selected to contribute with their genetic material for the creation 

of future generations. In other words, the fittest element will survive and the weakest will die. 

Two popular evolutionary techniques are Genetic Algorithms (GAs) and Genetic 

Programming (GP). In GAs the individuals are represented as bit strings on which different 

nature-inspired operators, such as crossover, and mutation are applied. GP utilizes trees to 
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represent the individuals in the population, where each tree represents a sort of program and 

the evolution process a “programmer”. Operators can still be applied but it is important to 

check the validity of the result, since the target tree can be an invalid program.  

In this paper we focalize on genetic algorithms. A detailed description is given in the next 

section, while practical applications are described right after.  

 

5.2 Genetic Algorithms 

GAs use artificial evolution as a process that reproduces the natural selection over a 

population of individuals. In this context, some key principles have to be fulfilled in order to 

have a true artificial evolution process: 

• Heredity: parents and offspring are similar, the copy of the genome to the next 

generation is accurate; 

• Variability: even if the copy process has to be accurate it is not perfect so the offspring 

is not an exact copy of the parents; 

• Fecundity: variation influences the behaviour of the new generation and the change of 

behaviour affects on the success of reproduction. 

A genetic algorithm is an idealized computational version of Darwinian evolution. In 

Darwinian evolution, organisms reproduce at differential rates, with fitter organisms 

producing more offspring than less fit ones. Offspring inherit traits from their parents; those 

traits are inherited with variation via random mutation, sexual recombination, and other 

sources of variation. Thus traits that lead to higher reproductive rates get preferentially spread 

in the population, and new traits can arise via variation. 

A GA is often composed by the following steps: 

• Generation of a random initial population of individuals. 

• Evaluation of the “quality” of the phenotypes in the population through a Fitness 

Function. The level of fitness indicates the probability of success of the phenotype in 

the environment; 

• Selection of high quality individuals in the population (high fitness means high 

probability of being chosen for the reproduction process); 

• Crossover: recombination of the genotypes from the chosen phenotypes to produce 

offspring. This step can be done with different methods, an example is shown in 

Figure 8; 
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• Mutation: random modification of small parts of the new genotype with low 

probability (mutation rate). 

This process is iterated for many generations, at which point hopefully one or more high-

fitness individuals have been created.  

 

 

 

 

 

 

FIGURE 8: One-point uniform crossover: a single crossover point on both parents' organism strings is selected. 

All data beyond that point in either organism string is swapped between the two parent organisms. The resulting 

organisms are the children. 

 

5.3 Evolving connection weights 

Here the genome represents connection weights [10]. Sometimes, using backpropagation, the 

gradient descent remains trapped into local minima of the error function or, even worst, the 

function is non-differentiable. In such cases, it is possible to use evolution, where the 

environment is composed by the network architecture. The fitness function is formulated in 

terms of error between the actual and target output. Moreover, this function does not have to 

be differentiable or even continuous. The evolutionary process can be divided in two different 

phases: 

1. The representation of the connection weights have to be decided (e.g., binary string); 

2. The search operators have to be decided (e.g., crossover, mutation). 

Differently tuned operators in combination with different representation could produce very 

dissimilar results in terms of performances. The most widely used representation is a binary 

string, where the binary representation of the connection weights is concatenated following a 

well defined orders, for example input layer first, hidden layer after and output layer last. 

Using a binary representation there are advantages and disadvantages. First of all, it is 
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extremely important the number of bits used to represent a single weight. In fact, using too 

many bits would expand the search space whether using too few would reduce the 

approximation of binary represented real values. Moreover, it is very difficult to use crossover 

since the position of each weight is crucial and feature detectors found during the 

evolutionary process could be destroyed. 

Another issue is the so-called permutation problem (or competing convention problem). It 

arises because the genotype-phenotype mapping is a many-to-one representation and different 

binary strings can abstract neural networks with the same functionality. This situation is 

shown in Figure 9. 

 

 

 

 

 

 

 

FIGURE 9: (a) and (b) represent two different neural networks in terms of binary representation (4 bits for each 

weight) with equivalent functionality [10]. 

Another possibility is to use a hybrid technique that exploits the benefits of both evolution 

and backpropagation. Specifically, EAs can be used to find a sub-region in the solution space 

and then locally search the final solution with BP. 

 

5.4 Evolving architecture  

In the previous section, a predefined fixed architecture has been considered along the whole 

evolution process. This section shows that it is possible to evolve topological properties such 

as connectivity or transfer function of each neuron. Usually, the network design and structural 

modeling is performed by humans. It is a kind of engineering task that mostly relies on 
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experience. It is difficult to find a systematic way of automating the process. In general, two 

different approaches can be used: 

• Constructive approach: staring from a minimal network the algorithm adds layers, 

nodes and connections, if needed; 

• Destructive approach: starting from a maximal network, the unnecessary components 

are removed. 

The evolution process can be formalized as a search in the architecture space and each point 

in the solution space represents a different architecture. The fitness function can measure 

different parameters, e.g., lowest training error, lowest structural complexity. Using a 

constructive technique, an issue that has to be taken into account is that the solution space can 

be infinite because the possible number of network components (nodes, layers) is unbounded 

[27]. Moreover, similar architectures can have different performances and different 

architectures can have similar behavior.  

As for the evolution of connection weights, the network developer has to choose the genotype 

representation and the evolutionary algorithm characteristics. For the representation, it is 

possible to use direct or indirect encoding. Direct encoding includes all the connections and 

nodes details in a matrix, while indirect encoding specifies only some important network 

features. Unfortunately, for both encoding types the permutation problem is still present. 

The transfer function in each neuron is also something that is often defined a priori. Usually, 

it is assumed to be the same for all the nodes, at least inside the same layer. It is possible to 

apply evolution to decide whether a node should use a specified transfer function (for 

example a sigmoid) or another (a Gaussian). 

 

5.5 Evolving rules  

The same learning rule can have very dissimilar performances with different architectures, it 

is somehow architecture dependent. For example, there exist many variant of the Hebbian 

learning rule, each one optimized for a specific architecture. However, it may be difficult to 

choose the learning rule in advance, especially if the network structure and topology is 

unknown. It may be better to adapt the learning rule in a dynamic way, depending on the 

underlying architecture and the specific task that has to be performed. In other words, the 

artificial neural network should have the ability of “learning to learn”. Using artificial 

evolution, it is possible to evolve learning rules, giving to ANNs an emergent creativity, 

similar to the creative process of biological systems. 



16 

 

In the category of rules evolution, we can identify two sub-branches: 

• Evolution of algorithmic parameters; 

• Evolution of the actual learning rules. 

Instead of evolving the whole learning rule, it is possible to evolve only some algorithmic 

parameters. For example, if backpropagation is chosen, the evolution process can be used to 

adjust the values of learning rate and momentum. In order to use this approach, it may be 

better to encode into each chromosome the information of parameters and network 

architecture, in such a way to optimize the exploration of the solution space and search for a 

well balanced combination of architecture and algorithmic parameters. In some other cases, 

when the structural design is pre-defined, the evolution can be employed to optimize 

parameters towards a specific architecture. 

Working in a dynamic environment, it may be necessary to evolve the learning rules as a 

whole. The key issue is to find a good representation for rule’s dynamic behavior into fixed 

and static chromosomes. Usually, some assumptions are made, such as: 

• The used learning rule is the same for all nodes; 

• The update of weight relies only on local values: input node, output node and local 

connection weight. 

With those assumptions, the learning rule is considered to be a linear function of the local 

values and their products. 

 

5.6 Other types of ANN evolution  

Another plausible way of applying evolution principles together with artificial neural 

networks is when the number of input features is big and the performances of the network are 

not good enough. If the number of inputs is large, the network requires more nodes (and thus 

a bigger size) and more training data in order to be trained (and, as a consequence, more 

time). There exist many statistical techniques for input preprocessing, for reducing the 

number of dimensions (e.g., random matrix method), for eliminating redundant input features. 

Sometimes, the network can have better performances with fewer inputs. This dimensionality 

reduction can also be achieved by evolution, representing each chromosome as a binary string 

with the value “1” if the input feature has to be used, or “0” otherwise. The fitness function is 

calculated with a real training of the network, utilizing only the corresponding active input 

features in the genetic string.  
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Another original and uncommon idea is to use evolution in order to produce new training 

samples, evolving a training set.   

More in general, as described in the previous paragraphs, evolution of ANNs can be used in 

different ways and for very different purposes, to optimize the network structure, the 

parameters and so on. There have been some very interesting investigations on how to apply 

evolutionary algorithms to evolve ANNs as a whole. A possible framework [25] for EANNs 

is presented in Figure 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 10: A general framework from evolution of artificial neural networks [25]. 

Such framework can be considered ad a general methodology for adaptive systems, where the 

three evolution levels can be increased (or decreased) with the introduction of new fitness 

interfaces between levels.  
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6  Introduction on Evolutionary Robotics 

Evolutionary robotics is a field that exploits artificial evolution and development in order to 

create autonomous robots that are able to work without human intervention, developing their 

own skills without being programmed. Khepera is a widely used robot for experiments on 

evolution of artificial neural networks as robot controllers. It has infrared proximity sensors 

that could be used as input signals and motor controlled wheels as output. A computer 

running the evolution process is usually connected (wired or wireless) and the emergent 

individuals are downloaded and tested on the robot [1]. A representation of Khepera is shown 

in Figure 11. It is extremely important to test the behaviour of ANNs with real robots and real 

environments because not all the physical properties can be always encoded into simulations 

with enough accuracy and, sometimes, the actual behaviour could be very different from the 

simulated behaviour.  

 

 

 

FIGURE 11: Khepera robot. 

One of the most common experiments to test the capabilities of an ANN as a robot controller 

is the T-maze. Widely used for experimentation with rats, it consists on a maze with a T 

shape, where the robot is placed in the bottom and one reward point is placed in one of the 

sides of the T-shape. The robot is controlled by an ANN and the fitness function is based on 

the ability to reach the reward point [7]. The ANN, after many trials, will adapt to the 

environment and eventually learn how to reach the reward. After some tests, it may be useful 

to move the reward point on the other side, to test that the robot has actually learned how to 

reach it and not just to turn all the times in one direction. T-maze is represented in Figure 12. 

 

FIGURE 12: A T-maze with one reward point (R). 
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7  Intelligent Agents and Artificial Evolution of Robots 

The process of evolving intelligent agents for robot control is a time consuming task, 

especially when the emergent control agents are tested on real physical robots in order to 

evaluate their fitness. On a real scenario, such as the one described by Floreano and Mondada 

in [31], the experiments carried out on real robots took 10 days whether the same 

experiments, in a simulated environment running several tests in parallel, would have taken 

only few hours. However, even if the simulations can be quite accurate and give a good 

approximation of a real situation, it is extremely important to test the agents on physical 

robots. Several factors are extremely hard to be simulated, such as:  

• mechanical robustness: a physical robot is subject to hardware damage, due to simple 

wear or because in early generations the behaviour can be unpredictable and the robot 

may have collisions with other objects in the environment; 

• energy supply: power has to be provided, either through batteries or connecting the robot 

to a power supply with wires; 

• differences in real world sensing and actuation: it is extremely difficult to simulate the real 

world. Moreover, even apparently identical hardware (sensors, motors) may have slightly 

different behaviours due to minor differences in their mechanics or electronics. Other 

factors in the environment can influence the sensors and actuators’ behaviour, such as 

temperature of operation, humidity etc. This means that different sensors, exposed to the 

same external stimulus, react differently; 

• measured values are approximations: sensors do not give a 100% accurate measure but 

just a fuzzy approximation of the reality. Noise can be introduced in simulation, to 

mitigate this problem. However, the introduction of noise can cause performances drop 

when the same individual is simulated or tested on a physical robot.  

A rule of thumb is that real world validation using physical robots it then necessary. 

Khepera robot is equipped with 8 infra-red sensors (distributed around the body) as input 

devices and lateral wheels (that can rotate in both directions) as output devices. The vision 

module can operate in two different ways: passive, measuring the amount of infra-red light in 

the environment (roughly proportional to the amount of visible light), and active, measuring 

the amount of reflected light (depends on distance from an object and reflectance of the target 

surface). The active mode can be used as a proximity sensor, where the input signal is discrete 

and refreshed every 5 microseconds.  

When we think about visual system, it is important to keep in mind the difference between 

what we see and what a robot sees. In fact, robot infra-red photoreceptors are just an 
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approximation of biological neural photoreceptor cells. A Khepera snapshot “image” will 

look like the signal in Figure 13. That is what the robot sees! 

 

 

 

 

 

FIGURE 13: A representation of a snapshot from Khepera infra-red vision, covering a visual field of 36 

degrees. The robot is in front of a black stripe against a white background. Figure adapted from [1]. 

 

7.1 Example: Navigation System 

Simple motion with obstacle avoidance is a classical experiment with robots. In general, it 

does not require internal states or memory. It consists on the creation of an appropriate 

mapping between input stimuli and output signals. The fact that each movement depends on 

the incoming input signal, which actually depends on the previous movement, makes it 

difficult to design a robust navigation system that does not depend on the topology of the 

environment.  

One of the first experiments in the field was conducted by Braitenberg in 1984. He designed a 

vehicle where wheels were directly connected to the input sensors through weighted 

connections, as a sort of neural network. This connection setup with excitatory links from the 

back sensors and inhibitory links from the front sensors have been tested on Khepera robots in 

a looping maze. Careful tuning of the connections between sensors and motors is required. If 

no a-priori knowledge about sensor / actuator connections or environment characteristics is 

present, evolution can be used to search for control agents able to perform the navigation task 

with obstacle avoidance. The fitness function can be measured as value proportional to the 

distance or the longest path covered by the robot without hitting any obstacle, in the shortest 

interval of time. The evolution process searches in the phase space of all the possible 

solutions where each point in the multidimensional space represents a possible individual and 

each axis represent a degree of freedom. Results presented in [1] shows that the evolved 

individuals perform better that Braitenberg’s vehicle.  
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FIGURE 14: Average and Max fitness for each generation. Khepera is used until generation 106, after it is 

substituted by Koala.  

 

7.2 Sensory-Motor Coordination

In reactive systems there is a sort of direct link between input and output and the system 

produces the same motor response if the same sensor

where even complicated reactive behaviors can be

the external environment, using a kind of coordination between perception and action. This 

process is called sensory motor coordination and it consists 
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of the agent in the environment or even modifies the environment itself. 

Nolfi and Floreano [1] presented an example of sensory aliasing problem 

with sensory-motor coordination

more than one environmental state (corresponding to the same sensory pattern) that should 

produce different motor responses. This is done by performing an action that consists on 

searching for another sensory input that can solve the ambiguity. Experiments were conducted 

 

The evolved neurocontrollers have developed an input-output mapping that is 

the physical morphology, shape, sensors and actuator characteristics of Khepera. Interesting 

questions are: what happens if we replace Khepera with another robot? Is the control agent 

able of generalization? Does it show any re-adaptation ability using different robots?

Mondada carried out experiments using a bigger mobile robot called Koala. It has six wheels 

instead of two and sixteen infra-red sensors (only eight were used in the experiments). The 

control agent was initially developed on a Khepera robot using evolution and afterwards, after 

106 generations, the robot was replaced by a Koala. As presented in Figure 14, after a 

ution process is able to find fitter individuals in few generations. 

14: Average and Max fitness for each generation. Khepera is used until generation 106, after it is 

Motor Coordination and Behavior Decomposition 

In reactive systems there is a sort of direct link between input and output and the system 

produces the same motor response if the same sensory input is received. There are some cases 

where even complicated reactive behaviors can be produced without internal representation of 

the external environment, using a kind of coordination between perception and action. This 

process is called sensory motor coordination and it consists on an agent

interaction based on the principle that the agent executes an action that changes the position 

of the agent in the environment or even modifies the environment itself.  

Nolfi and Floreano [1] presented an example of sensory aliasing problem 

motor coordination. This problem consists on an agent controlled robot that has 

more than one environmental state (corresponding to the same sensory pattern) that should 

produce different motor responses. This is done by performing an action that consists on 

nother sensory input that can solve the ambiguity. Experiments were conducted 
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Nolfi and Floreano [1] presented an example of sensory aliasing problem that can be solved 

. This problem consists on an agent controlled robot that has 

more than one environmental state (corresponding to the same sensory pattern) that should 

produce different motor responses. This is done by performing an action that consists on 

nother sensory input that can solve the ambiguity. Experiments were conducted 
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using a Khepera robot equipped with infrared sensors and a linear camera. Infrared sensors 

were used to detect obstacles proximity and the camera was used to discriminate white and 

black obstacles. The goal was to avoid black obstacles and approach white ones.  

Not every time it is possible to solve complicated tasks with sensory motor coordination, 

sometimes internal states are necessary. To do that, different neural architectures with a 

different number of units in an intermediate neural layer were trained with back-propagation 

algorithm. It turned out that the trained networks (with or without intermediate layer) were 

able to perform the discrimination task maximum in the 25% of the cases, due to paterns that 

were not easily separable. Better performances have been obtained using artificial evolution to 

discover the weights of the neural controller.   

Another approach to exploit sensory motor coordination is behavior decomposition. In a 

behavior based approach, the whole system behavior is divided into sub-behaviors, 

implemented as different modules. For example the discrimination problem can be 

approached dividing the whole behavior as shown in Figure 15. However, decomposition can 

produce sometimes sub-tasks that are more complex that the original problem. 

 

 

 

 

FIGURE 15: Decomposition and integration approach. The whole behaviour emerges out of the integration of 

sub-behaviours [1]. 

Behavior decomposition can be also achieved with modularity, where each sub-behavior is 

associated with a specific sub-component of the controller, called module. A practical 

example presented by Nolfi [32] is the garbage collection robot. Khepera is placed in an 

environment surrounded by walls and the goal is to remove the garbage objects. Five different 

architectures were testes: A- standard feed-forward architecture, B- architecture with an 

internal hidden layer, C- recurrent architecture, D- modular architecture with two pre-

designed modules, E- emergent modular architecture. In this last case, the number of modules 

and the weights were evolved while the robot was interacting with the environment. The 

results, presented in Figure 16, show that the emergent modular architecture finds earlier a 

solution to the problem, even earlier than the handmade modular architecture. 
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FIGURE 16: Evaluation of the garbage collection task using different architectures [32]. 

  

7.3 Co-evolution 

In the previous chapters we have seen that evolution is a powerful tool. However, it is used 

from one generation to another, creating offspring that is more likely to have better 

performances. Learning, on the other hand, occurs in a specific generation, where the 

individuals in the population learn along their life-cycle.  

If there is more than one population, competitive co-evolution can increase the power of 

artificial evolution. In literature, the best known example is the co-evolution of predators and 

prey. In order to survive, the two species have to evolve new strategies from one generation to 

another: the environment is continuously changing. In the beginning of the evolutionary 

process, both species are supposed to have a poor behaviour. Gradually, through evolution, 

both species will develop more complex strategies, producing a sort of incremental evolution. 

Experiments with Khepera robots show that there is no guarantee that the species will refine 

their strategy but, on the other hand, they may completely change strategy, adopting a 

technique that is not more complex but just different, with a better performance for the 

specific situation but not suitable against one of the strategies of the opponents in the previous 

generations. This is also known as the cycling problem. 

 

7.4 Walking Machines 

One of the most challenging tasks for robots is walking. It requires a greater effort of sensor-

motor coordination, compared to wheeled robots. In [1] several examples are presented, 

depending on the morphology and number of legs of the robots. Many of the experiments 
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have several common aspects: robots are only capable of static walk (if the robot stops the 

walk, it remains in equilibrium without falling, this is achieved with four legs or more), neural 

networks are integrated with oscillators in order to synchronize the motor movement, the 

environment is not taken into account, the evolution process goes through stages and the 

controller for one leg is evolved. Afterwards, it is replicated for all the other legs and 

evolution is used again to create the coordination among legs.  

Lately Bongard, Zykov and Lipson [33] at the Computational Synthesis Lab of Cornell 

University, investigated the behaviour of a four-legged robot that was able to infer its own 

structure and recover in case of damage in one of the legs. This was achieved through 

exploration of different self-models by performing different actions, random in the beginning 

and optimized locomotive sequences after many steps. This field of research can help to 

understand how to allow robots to create models of themselves and achieve higher levels of 

machine cognition. 

 

8  Discussion 

The famous American futurist Ray Kurzweil wrote in his book “The Singularity is Near” that 

in the 2030s mind updating will be reality. In other words it will be possible to emulate the 

whole human brain into a computer system. The jump between today’s intelligent agents 

governed by evolving artificial neural networks and a real brain is huge. Nowadays artificially 

intelligent robots are able to perform specific tasks in a clever manner without being directly 

programmed, they learn from experience. This is just the first step toward an intelligent 

machine.  

What makes us intelligent is not only the ability to learn from the past and execute actions 

based on the environment stimuli together with our knowledge. It is our ability to recognize 

ourselves, a self-consciousness and self-awareness [4] [5] [6]. We are able to locate ourselves 

in space and time into the environment. Based on the information that we retrieve from the 

external world, we are able to understand where we are located and make spatial and temporal 

comparisons and reasoning. Even less evolved animals are able to do that.  

Let us consider two birds on the ground and a breadcrumb few meters away from them. The 

closest bird will analyze the situation and see the food. Most likely, this bird will immediately 

react and fly there to eat the bread. The second bird, which is few meters away from the first 

bird and more distant from the breadcrumb will also analyze the situation. His brain will 

recognize the food and, based on previous experience, it will understand that he should fly 

there also. But at this point, the self-awareness will come in action. The second bird will place 
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himself into the environment and understand his location compared to the position of the 

other bird, in respect to the bread. He will also analyze the time necessary to reach the food 

and he will eventually understand that he will need more time than the other bird to reach the 

bread. He will not fly there! 

If two ANN controlled robots are instructed separately with a T-maze set-up with one reward 

and later placed in another environment together, again with one reward, they can be 

considered intelligent if and only if they show self-consciousness and self-awareness abilities. 

It is not enough that both will move towards the reward. This behaviour of competing for the 

reward could make sense only if they are placed more or less at the same distance from the 

reward point. Otherwise, as shown in Figure 17, robot A should reach the reward R and robot 

B should not move.  

 

FIGURE 17: Two robots and only one reward. 

 

9  Conclusion 

In this paper, an extensive coverage of the state-of-the-art in adaptive-ANN-controlled 

intelligent agents has been given. In the first chapter, the analogy between biological and 

artificial neurons has been presented, together with a history of artificial neural networks. The 

second chapter is a sort of glossary of relevant terms and it serves as a basis for the formal 

definition of ANN and the adaptation techniques, presented in chapters 3 and 4 respectively. 

Adaptation refers to the ability of the network to respond to changes in the environment. It 

can be achieved by structure modification, by neuronal property modification or by parameter 

adjustment, using learning rules such as Hebbian rule, Delta rule or Backpropagation. 

Evolution can be also used for network optimization. Several evolutionary strategies have 

been presented together with a general framework for adaptive systems. Chapter 6 describes 

how to implement ANNs as control agents for robots and Chapter 7 illustrates more in details, 

with practical examples, how to integrate neural networks and evolution to obtain 

“intelligent” agent controlled robots capable of sensory motor coordination and other complex 
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tasks such as walking. Finally, chapter 8 discusses the point of view of the author regarding 

the gap that has to be filled in order to really consider the robot’s behaviour intelligent. Key 

words here are self-awareness and self-consciousness. 
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