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Abstract
Complex self-architecturing systems are difficult to pro-
gram, i.e. by top-down engineering. Kowaliw and Banzhaf
(Kowaliw and Banzhaf, 2012) argue that the bottom-up
methodology of artificial development is an appropriate
means of approaching complex systems engineering. How-
ever, achieving some sort of self-architecturing proper-
ties, e.g. morphogenesis or self-replication, is not trivial.
One way of “programming” such developmental systems is
through artificial evolution, i.e. a combined evolutionary and
developmental approach (EvoDevo). Searching for a solu-
tion for an artificial EvoDevo system that targets levels of
complexity found in nature can be intractable. Therefore, an
appropriate mapping that scales well and at the same time
allows solutions to evolve incrementally, starting with a so-
lution encoded into a small genome gradually complexified
by adding new degrees of freedom, is desired.

In this work a cellular system is used as testbed for mor-
phogenetic engineering. A traditional CA table-based en-
coding is replaced by a Compositional Pattern Producing
Network (CPPN) mapping, a developmental encoding often
used in systems without local interactions (Stanley, 2007).
In our work a CPPN is used as developmental encoding
based on local interactions, i.e. a true morphogenetic cellular
system. The cellular automata CPPNs are evolved through
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Figure 1: NEAT genotype and phenotype examples. The
phenotype only shows the topology that the genotype en-
codes (weights and activation functions are omitted).

a NeuroEvolution of Augmenting Topologies (NEAT) algo-
rithm, a method that evolves increasingly complex networks
(Stanley and Miikkulainen, 2002).

A NEAT genome consists of genes that encode nodes
and connections between them. Figure 1 shows an example
genotype-to-phenotype mapping. NEAT starts with an ini-
tial population of very simple networks, typically with just
the input and output nodes and connections between them.
Over generations, more nodes and vertices are added or dis-
abled, activation functions are changed, and weights are ad-
justed. The process of gradually expanding the genome is
called complexification, and intends to reflect how life on
earth is believed to have started with simple organisms and
gradually evolved into more complex creatures (Darnell and
Doolittle, 1986; Pross, 2005).

The approach described in this work is termed CA-NEAT.
All cells in the systems are uniform, i.e. they share the same
genome network. Two benchmark problems are investi-
gated: 2D morphogenesis and replication of structures of
increasing complexity.

Figure 2 shows the results for the evolution of the “Tri-
color” flag pattern morphogenesis in 100 independent runs.
In 100 generations, 93 of the independent runs achieved
a perfect solution. The initial populations contained 200
genomes which consisted of an input layer with one node

Figure 2: Tricolor flag pattern morphogenesis, first 100 gen-
erations.



Figure 3: Example of morphogenesis.

Figure 4: Example of replication.

per CA neighbor (von Neumann 5 neighbors) and one out-
put layer with one node per possible cell state.

An example of evolved network for the “Tricolor” mor-
phogenesis problem is shown in Figure 5. The two hidden
nodes are not connected to output nodes and are thus “vesti-
gial”. Dashed lines represent disabled connections. An ex-
ample of morphogenesis process is depicted in Figure 3 and
an example of replication is represented in Figure 4. Mor-
phologies and structures of increasing complexity have also
been investigated (Nichele et al., 2017), but are not included
in this abstract due to space constrains.

Results show that CA-NEAT is an appropriate means of
approaching cellular systems engineering. We argue that
CA-NEAT could provide a valuable mapping for morpho-
genetic systems, beyond cellular automata systems, where

Figure 5: Network for “Tricolor” morphogenesis that reaches a point attractor equal to the target pattern. Dashed lines represent
disabled connections. Green and red represent positive and negative values. The thickness represents the value intensity. Nodes
can have different activation functions (sigmoid, gaussian, cube, hat, rectified linear unit, etc.) (Nichele et al., 2017).

development through local interactions is desired. In natu-
ral processes of development such as embryogenesis, local
interactions and developmental time are key requirements.
Biological morphogenetic systems are the result of a con-
tinuous computation, i.e. development, where intermediate
phenotypes emerge along the developmental path, and these
intermediate phenotypes influence the decoding and regula-
tion of the genotype for the next phenotypic stage.
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