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Abstract—In the last 50 years, the number of transistors in 
electronic circuits have increased following the Moore’s Law and 
thus, performances of processors have also increased. On the 
other hand, performances of memories have not increased as 
much as microprocessors. In order to reduce this gap, other 
hardware and software mechanisms have been implemented. 
Since microprocessors can execute instructions faster than when 
the actual data will become available from physical memory, fast 
cache memories have been introduced to keep and deliver (when 
necessary) the needed data. A key component that helps the 
interaction between processor, cache and physical memory is the 
prefetcher. Prefetching means predicting which data will be 
needed by the next executed instructions and fetching it into the 
cache memory in a way that it will be available before it will be 
referenced. In this paper we will analyze two different types of L2 
prefetching mechanisms suitable for different program 
structures, sequential and not-sequential, and we try to combine 
them together. 
 

Index Terms—computer architecture, prefetcher, cache 
 

I. INTRODUCTION 

ransistors are semiconductor devices used to build 
integrated circuits and electronic components. Obviously, 

the performances of microprocessors are directly related to the 
hosted number of transistors. A direct consequence is that 
smaller are the transistors, higher is their density on a chip. 
Therefore, the microprocessors manufacturers started in the 
early ‘70s a miniaturization process. This trend was described 
by Intel co-founder Gordon Moore. He guessed that the 
growth of the number of transistors on integrated circuits 
would double every two years.  Moore’s Law [1] turned out to 
be particularly accurate until 2002 (it is still valid for FPGAs 
and multi-core processors) but physical constraints and the 
emergence of green computing [2] slowed down this process. 
Nevertheless, even if the size of memories has incremented, 
their speed has not improved enough. Memory latency has 
become the bottleneck in modern computers’ performance. 
This situation is also referred as “memory wall” [3].   
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Several mechanisms, such as memory hierarchies [4], Out-

of-Order (OoO) execution, NUMA [4], increase of bandwidth 
utilization and CMPs [5], have been exploited to mitigate this 
phenomenon. The introduction of a memory hierarchy consists 
on the incorporation of small and fast cache memories between 
the processor and the RAM. This is shown in Figure 1. 

Data that is frequently used can be placed in the cache 
memory which is physically close by the processor and 
therefore can deliver the required information faster. Level1 
cache is usually small and placed on-chip, L2 is bigger than L1 
and slightly slower. In CMP architectures, those two levels of 
cache are often private to each specific core. There may be a 
L3 cache (and even more levels) which can be shared among 
the cores and placed off-chip. 

Now that the hardware architecture supports a technique to 
decrease the memory latency, it is required to implement a 
mechanism to load data from the memory onto the cache 
hierarchy, i.e., prefetching.  

Prefetching is a speculative technique that aims to predict 
which data will be used in the future and fetches it into the 
cache memory before it will be required by the CPU. This can 
be done by detecting patterns in the program execution, but 
since it is just a mere prediction, the prefetcher can be wrong 
and thus pollute the cache and overload the bandwidth. The 
situation where the data referenced by the CPU is found in the 
cache is called “hit”  and, on the other hand, if the data is not 
available in the cache and it has to be loaded from the main 
memory there is a “miss” . In other words, an effective 
prefetching reduces the number of misses, exploiting cache 
properties such as spatial and temporal locality.  

 

Definition 1: Spatial Locality 
If a data is accessed, it is likely that other data in addresses 

nearby will be accessed in the future. 
 

Definition 2: Temporal Locality 
If a data is referenced by the CPU, it is possible that it will 

be used again in the future. 
 
 

 
 

Fig. 1.  Memory hierarchy example. 
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In chapter II a brief explanation of the most common 
prefetching algorithms is given. Chapter III describes the 
techniques that we have implemented and Chapter IV 
illustrates the used methodology. In Chapter V a discussion of 
the results is presented. Finally, Chapter VI concludes the 
paper. 
 

II.  RELATED WORK 

Several mechanisms, such as sequential prefetching [9], 
stride direct prefetching (SDP) [10], reference prediction 
tables (RPT) [11], program counter/delta correlation 
prefetching (PC/DC) [12], delta correlation prediction table 
(DCPT) [6] and adaptive prefetching [13], have been studied 
in the past.  

Sequential prefetching exploits the spatial locality property, 
simply issuing the next block whenever a cache miss is 
detected. This can be improved adding a tag bit which 
indicates that the cache block was fetched by the prefecther. 
Unfortunately, not all programs access memory locations in a 
sequential way. In SDP, each time a program counter is 
encountered, it is possible to determine the difference between 
the two last referenced memory blocks and calculate the next 
block to fetch simply adding the last required address to the 
calculated delta. An improvement to SDP is RPT. The main 
idea is to save the PC and the relative referenced address 
(initial state). The second time the same PC is recalled, the 
delta is calculated (training state). The third time, a new delta 
is calculated and, if it matches with the previous, the prefetcher 
starts to operate (prefetching state). PC/DC uses a global 
history buffer (GHB) to store the chronology of each miss. The 
entry in the GHB is connected with the previous and the 
calculated deltas are stored in a separate table. DCPT stores, 
for each PC, a certain number of computed deltas and, if there 
is a match between the last two deltas and all the deltas that 
previously occurred, than the prefetcher calculates the next 
memory addresses to fetch based on the previous history. 
Finally, adaptive prefetchers try to adapt to the specific 
situation, being more aggressive and speculative when the 
prefetching is performing positively and being more 
conservative when the behavior is not as expected. 

 

III.  IMPLEMENTED PREFETCHERS 

In the beginning, in order to develop a level 2 cache 
prefetcher that has decent performances on average in every 
situation, it is necessary to study the behavior of each 
benchmark available in the “SPEC CPU2000” suite, which is 
used to carry out the tests. To do so, we have executed the 
given sequential prefetcher, to understand the sequencing 
degree of the memory locations accessed by the benchmark 
programs. Afterwards, we have modified the sequential 
prefetcher increasing the “prefetched window” (the number of 
subsequent prefetched memory blocks at each iteration) from 1 
to 6 (the results are shown in Figure 4 and described in Section 

V). Keeping a fixed size window for the whole prefetching 
process is a strong restriction. It is possible to give freedom to 
the prefetcher to adopt the number of prefetched items (the 
window size) depending on the local accuracy of the 
previously prefetched elements.  

In other words, if N subsequent memory blocks that have 
been previously prefetched are referenced by the CPU (all or 
up to a certain threshold), the next time the prefetcher will 
fetch N+1 memory blocks. If the local accuracy inside the 
defined window is lower than the threshold, the prefetcher will 
reduce the size of the window and select only N-1 elements.  

With some benchmarking programs we noticed that, due to 
a low sequencing degree, the adaptive window prefetcher was 
not improving its performances. We decided to implement an 
algorithm based on prediction of referenced memory blocks 
with delta correlations. 

Finally, we decided to combine both algorithms together in 
a unique prefetcher.  

In the following paragraphs, the technical details of each 
implementation are described. 

 

A. Fixed Sequential Prefetching 

Even though the results of Fixed Sequential Prefetching are 
widely known in literature, we have decided to use this 
algorithm, in order to extrapolate the degree of sequencing for 
each benchmark. The strategy adopted in this prefetcher is 
quite straightforward and it uses only the concept of block size 
to predict the possible future addresses requests. The block 
size is the area that contains a specified number of contiguous 
pages, used to exploit spatial locality. The dimension of block 
size is tricky to calculate. In fact, if the value is too high, it 
affects cache performances and interconnection bandwidth. By 
contrary, if the size is too low, the sequential algorithm might 
issue less requests than those needed. In our algorithm, we 
have used the value proposed in the given example of the 
mini-project guide [7].  

The used sequential algorithm works as follows: whenever a 
miss occurs, it prefetches the N blocks following the missing 
block, where N is the degree of prefetching. The number of 
blocks issued after a miss remains constant for the whole 
execution of the program.  

Moreover, the algorithm checks if the address intended to 
issue is not already present inside the cache or in the Miss 
Information Status Holding Register (MSHR). This further 
control allows reducing the amount of transferred data, 
therefore also interconnection bandwidth and cache pollution.   
 

B. Sequential Aggressive Adaptive Window Prefetcher 

The aggressive sequential adaptive algorithm [13] is an 
improvement of the previous one and it also allows exploiting 
better the sequencing of each benchmark. The implementation 
of this approach requires more memory than the sequential 
version.  The main benefit of this algorithm is due to a window  
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that is dynamically adjusted to the specific benchmark at 
runtime.  The Adaptive prefetcher changes the degree of 
prefetching according to the previous value of the window. 
Hence, it increases the window only when it is sure that the 
next contiguous blocks might have a high probability to be 
used by CPU. In this way, the algorithm provides a different 
degree of prefetching while running the same benchmark. 

In order to increase the reliability of the current window, the 
adaptive algorithm introduces the concepts of threshold and 
lock window. The algorithm uses these two values as 
constraints to respect before updating the value of its window.   

When the algorithm receives a miss or hit, it performs 
prefetching for the following N blocks, where N is the value of 
dynamic window. Moreover, the algorithm sets the 
corresponding tag bit in the cache block for those requests 
issued by the prefetcher.  After that, it remains in a listening 
state for the next N requests (might be hits or misses).  

In this state, it counts how many hits have the tag bit set, 
hence, how many of them have been issued by the prefetcher 
(it discards those hits without tag bit set). The calculated value 
represents the accuracy of the previous window or, in other 
words, how many of N requests issued by prefetcher have been 
used by CPU. After that, the value of N for next prefetching 
might increase or decrease. To do that, the algorithm compares 
the accuracy value with a threshold. If the accuracy is greater 
or equal to the threshold, it means that the prefetching 
achieved a good result and it will work again with same 
window size or even more sequencing (bigger window). 
Otherwise, it means that the level of sequencing in the running 
code is decreasing (smaller window). There might be a 
problem when N continuously oscillates between two or more 
different window sizes. This can be solved using a 
conservative technique and keeping the same window width 

for more steps (L iterations, where L is the number of times 
that the window is locked and cannot be modified). 

If after L times the window is still valid (accuracy is greater 
or equal than the threshold), the algorithm increases the width 
of the window. Otherwise, the first time that the accuracy is 
lower than the threshold, the window will be immediately 
decreased and the L count will restart.  

 
Figure 2 shows an example of Aggressive Sequential 

Adaptive algorithm. The prefetcher receives the requests 
issued by CPU throughout L2 cache (it can be a hit prefetch, a 
miss or a hit cache). Hit prefetch is a situation when a hit 
occurs and the tag bit is set. This means that the address was 
issued before by the prefetcher (blue square). Hit cache means 
that the address is present inside L2 cache with a null tag bit 
(green square). The miss request indicates that an address is 
not found in L2 cache (red square).  Figure 2 also shows for 
each request, the value of: current window (W), threshold (Th) 
and lock flag (L). The example uses a max value of L equal to 
two and Th=W-1 (when W=1, Th is also one).  

Initially, the values of W and Th are equal to one. When the 
first hit occurs, the prefetcher issues only one request that turns 
out to be a good prefetching (grey square).  

Since L<2, before increasing the window another step is 
required (with W=1). The first time with W=2, only one 
request turns out to be a good prefetching but this condition is 
still valid because Th=1 and it still satisfies the requirements 
(# of good prefetching >= threshold). The second time with 
W=2, the algorithm performs again successfully and it updates 
W=3 (window size is equal to 3). Unfortunately, at the next 
stage, only one request turns out to be a good prefeching (one 
of the received hit is not triggered by the prefetcher).  Since 
the threshold is two, the condition is no longer satisfied and 

 
 
Fig. 2.  Example of Sequential Aggressive Adaptive Window Prefetcher. 
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the size of window is reduced (W=2). Thereafter, the 
algorithm works as before, restarting from W=2. The next 
stages show that the algorithm reaches window equal to three 
and four but, with W=4, the number of good prefetched 
addresses is not sufficient to satisfy the corresponding 
threshold (Th=3).  

 
As shown in the example, the value used as threshold 

represents a good tuning to enhance the performances of the 
whole algorithm. The final value has been chosen after many 
tests. 

It is important to remark that prefetching does not occur 
until all the elements inside the window have been checked (P 
elements = #hits + #misses). This solution is called aggressive 
sequential adaptive because it issues a prefetching right after 
the end of each window, either if the last item was a hit or a 
miss. Besides, two other less aggressive approaches have been 
studied.  

The first approach, called Miss-Adaptive (M-Adaptive), 
issues prefetching only when (once the checks on the previous 
window have finished) the first miss occurs. Even in this case, 
P = #hits + #misses.  

The second approach, called Discard Miss-Adaptive (DM-
Adative), issues a prefetching immediately after the first miss 
occurs inside the window (P = H, where  H are only hits).  

Even if those two last approaches seem more reasonable, we 
decided to use the aggressive solution because the achieved 
results were better.  
 

C. Delta Correlation Prediction Tables (DCPT) Prefetcher 

Delta Correlation Prediction Table [6] is a technique that 
combines the main principles of RPT and PC/DC. It saves, for 
each program counter that produces a memory request, the 
deltas between subsequent requested memory blocks. With 
those deltas, it is possible to keep track of the pattern with 
which the program accesses memory. If a repetitive pattern is 
found, DCPT calculates the address of the memory block that 
most likely will be required at the next execution of the same 
instruction and therefore deliver it in advance. This mechanism 
is implemented using a table that stores the Program Counter 
(PC) of the executed instruction, the address of the last 
accessed memory block, the history of deltas in a circular 
buffer and a pointer to the last delta.  

In literature, DCPT stores also the last prefetched address. 
In our implementation we have ignored this field in order to 
reduce the size of the table. In our opinion, the lack of this 
field is mitigated by the check of the presence of a certain 
memory block in cache before the actual prefetching (it may 
happen that the memory block is still in the buffer waiting to 
be loaded in the cache). When the instruction with the same 
PC is executed again, it is possible to travel backwards in the 
deltas table, searching for equal delta patterns that previously 
occurred. Tuning and adjustments are required in order to find 
the balance between size of the table and performances. 
Important parameters are the number of stored deltas and the 

number of stored PCs (an increase in one is reflected as a 
decrease in the other).  

Sometimes, the deltas are not perfectly matching but the 
required addresses are very close by. An improvement that can 
be introduced if no pattern repetitions are found is Partial 
Matching. The aim of PM is to reduce the spatial distance of 
the delta sequence and identify similar patterns. This is done 
by masking the less significant bits of the deltas and 
comparing only the most significant ones.  

 

 
 
Fig. 3.  Example of DCPT with partial matching. 

 
In Figure 3, without bit masking the two last deltas 10 and 8 

are not found in the delta stream and the prefetcher is not able 
to predict which memory block will be useful in the future. It 
is evident that, even if there is no perfect matching, all the 
deltas have close values. It may be beneficial to prefetch a 
memory block calculated with an enough accurate delta. 
Hiding the least two significant bits of the delta stream, it is 
possible to find a “partial” matching of the last two masked 
deltas (8 and 8) with some previous values and thus to 
calculate the following element to deliver.  

 

D. Adaptive Delta Correlation Prediction Table (WA-DCPT 
and SA-DCPT) Prefetcher  

In this section two different approaches to combine 
Sequential Aggressive adaptive Prefetcher and DCPT have 
been proposed: Window Adaptive-DCPT (WA-DCPT) and 
Switch Adaptive-DCPT (SA-DCPT).  

WA-DCPT introduces a different window for each PC 
stored in the Prediction Table. When DCPT needs to issue a 
prefetching for a specific PC, it delivers also all the subsequent 
blocks, according to its window size.  This solution, compared 
with DCPT, has a more memory demanding data structure 
because it also needs to store the value of windows associated 
for each PC.  This value is extremely important because, when 
the algorithm uses again the same PC, it needs to utilize again 
the same window size used before. Thus, each time the 
prefetcher identifies a new PC, it saves the previous window 
and it loads the new values of window and threshold. Yet, the 
rules to update the window are the same explained in adaptive 
sequential algorithm.  

SA-DCPT uses a different strategy. It tries to adapt the best 
algorithm for each benchmark, exploiting the benefits of both 
sequential adaptive and DCPT. Every time the prefetcher 
receives a request by L2 cache, it checks the current value of 
window and if it is less than a specific threshold, it employs 
DCPT, otherwise it uses the aggressive adaptive algorithm. 
The value of window used to switch from an algorithm to 
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another represents the main issue of this algorithm. From our 
results, we have observed that the best window parameter for 
switching among benchmarks is W=4.   

 

IV. METHODOLOGY 

To test the performances of the different prefetchers, we 
have run the SPEC CPU2000 benchmarking suite under M5 
simulator. The system architecture is an OoO CPU with Alpha 
21264 microprocessor, 32kB L1 cache (without prefetching) 
and 1MB L2 cache [7].  

The L2 cache prefetcher is notified every time there is a hit 
or a miss in L2 cache. The size of the cache block is 64bytes 
and the maximum number of pending prefetch requests is 100 
(MAX_QUEUE_SIZE). The simulated CPU clock runs at 
2GHz while the memory bus has a frequency of 400MHz. The 
size of the physical memory is 256MB.  

 
The prefetching algorithm is mainly composed by three 

functions: prefetch_init, prefetch_access and 
prefetch_complete. Modifying those functions it is possible to 
change the prefetcher’s behavior. The first function 
(prefetch_init) is called before the first access to memory and 
it contains all the initializations of the declared data structures. 
The second function (prefetch_access) is the main function 
which is called every time the prefetcher is informed that the 
CPU has accessed the L2 cache through the L1 cache (hit or 
miss). Inside this function the actual prefetch request is 
executed through a call to the function issue_prefetch, which 
queues a specific address into a buffer. Finally, the last 
function (prefetch_complete) informs the prefetcher that a 
previously queued request for a memory address has been 
accomplished and the actual memory block has arrived in the 
L2 cache. 

 

V. DISCUSSION OF THE RESULTS 

The results presented in this paragraph are obtained running 
simulations on Virtual Machines with Linux Operating 
System. The package is described in [7].   

 

A. Comparison of Sequential Prefetching algorithms with 
fixed size windows 

 
The radar graph in Figure 4 shows a comparison of the 
behavior for each benchmark.  Each corner of the hexagon 
illustrates the speedup achieved by a static sequential 
algorithm with fixed size windows prefetching.   

It is notable that benchmarks such as wupwise, applu and 
galgel have considerable results with this algorithm. 
Moreover, the performances of those benchmarks slightly 
increase with the size of the window. In other benchmarks 
(swim, bzip2_source, bzip2_graphic, apsi, bzip2_program) the 
performances are steadily around the same value. 

Unlike the previous benchmarks, ammp does not perform as 
expected using a sequential prefetcher with a fixed size 
window and it even decreases the performances with a lager 
window. The obtained performances are also slightly lower 
with art110, art470 and twolf. 

We think that to obtain good results in the whole suite, we 
need to develop a hybrid strategy that uses both sequential and 
not-sequential algorithms.    

 

B. Adaptive Window 

 
The graph in Figure 5a compares the behavior of different 

aggressive adaptive sequential algorithms (ADAPTIVE-
MaxWinN) using different maximum windows’ size (N). 
Additionally, the best results for the sequential algorithm are 
also presented (BEST-SEQUENTIAL). Among the different 
adaptive prefetchers, on average, the best performances are 
achieved using an adaptive algorithm with a maximum size of 
12. According to our tests, using a window greater than this 
value, the performances are steady. The results of ammp, 
art110 and art470 confirm the trend shown in section A (low 
sequencing). In fact, an increase of the max size of window 
does not improve the speedup. 

Figure 5b introduces the results of other two variants of 
Adaptive Sequential: M-Adaptive and DM-Adaptive. The 
achieved results are not better than the Aggressive Adaptive 
(with MaxWin=12). As expected, these two algorithms 
produce less “misses” and “prefetchers issued”. In fact, since 
the prefetcher issues requests only when a miss occurs (the 
first miss inside the window for DM-Adaptive, the first miss 
after the window in M-Adaptive), it reduces the whole amount 
of misses.   

 

C. Adaptive vs  DCPT vs DCPT-P 

 
The graph in Figure 2c compares the best adaptive 

algorithm (max window size of 12) with DCPT and DCPT-P.   

 
Fig. 4.  Comparison of the behavior of different benchmarks. The size of the 
prefetched static window has been varied from 1 to 6. Each edge of the 
hexagon represents a window size and the height of the hexagon represents 
the correspondent speedup.  
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The chart illustrates that for ammp the DCPT-P prefetcher 
outperforms almost twice better than the adaptive. 
Furthermore, for all other benchmarks the performances are 
similar or oscillating inside a limited interval. As expected, the 
results of DCPT-P are slightly better than DCPT. This result is 
also present in literature [14]. 

In order to use a data structure smaller than 8Kb, we have 
used a table composed by 16 deltas and 97 PCs. Furthermore, 
for DCPT-P we have used a masking of 8 bits. According to 
[14], masking more that 12 bits does not produce any Speedup 
enhancement. In our tests, we have not observed differences 
between a 8 bit or 12 bit masking. 

 

D.   Adaptive Delta Correlation Prediction Table (WA-DCPT 
and SA-DCPT) 

Before comparing WA-DCPT and SA-DCPT, we have tried 
to perform some tunings in order to achieve better results. 

In WA-DCPT, the number of PCs and deltas has been 
varied (all configurations are smaller than 8KB) as follows: 
7x178, 10x140 and 14x110. Respectively, the first value is the 
number of deltas and the second value is the number of PCs. 
Best results have been achieved using 14 deltas, as illustrated 
in Figure 5d. This tuning is compliant with the results 
presented in [15].  

In SA-DCPT we tried to vary the triggering event for the 
switching between the combined algorithms. If the window 
size is less than a specific threshold, DCPT is used. Otherwise 
Aggressive Adaptive is utilized. Threshold has been tested 
with values from 1 to 4. Unlike WA-DCPT, the chosen 
configuration is 16x97 (the data structure is different). We 
noticed that the best speedup is achieved with a window 
threshold equal to 4. The results are presented in Figure 5e. 
For greater values, SA-DCPT behaves as a normal DCPT. 

Considering only the best results (SA-DCPT_16x97-W4 
and WA-DCPT_14x110), both algorithms have the same 
behavior for all benchmarks except twolf and ammp 
(negligible difference). 
 

E. Comparison of developed prefetchers 

The graph in Figure 5f is a summary of the performances 
achieved by all developed algorithms, such as Fixed Size 
Sequential Prefetcher (BEST_SEQUENTIAL), Aggressive 
Adaptive Window Sequential Prefetcher (ADAPTIVE-
MaxWin12), Delta Correlation Prediction Table with Partial 
Matching (DCPT-P_16x97) and Switch Adaptive DCPT (SA-
DCPT_16x97-W4). Since the results of SA-DCPT and WA-
DCPT are close by, we decided to use SA-DCPT in the 
following comparisons, also because it performs slightly better 
with ammp benchmark. 

  The results in Figure 5f show that the DCPT-P obtains the 
best performances. It is important to highlight that, right after 
DCPT-P, the second best is SA-DCPT. In fact, it performs 
better than the other algorithms except for swim benchmark. 
SA-DCPT is a good compromise when there is a situation with 
both sequential and not-sequential executions in the running 
programs at the same time.  

 

F. Comparison overview 

 
The graph in Figure 5g illustrates the behavior of all 

developed algorithms together with reference prefetchers 
available in literature. An important remark is that our 
implementation of DCPT-P outperforms the reference DCPT-
P. We believe that this result is achieved because we are using 
a different implementation and data structure.  

 

G. Analysis of Developed Prefetchers’ Coverage 

Coverage is an important statistic when evaluating 
prefetchers. It represents how many cache misses that could 
have occurred without prefetching are avoided. Thus, a 
coverage value close to 1 means a lower number of cache 
misses.  

In Figure 5h, an analysis of the coverage for the developed 
prefetcher is shown. Benchmarks with low sequencing (ammp, 
art110 and art470) have a higher coverage with DCPT-P. On 
the other hand, benchmarks with high sequencing have better 
coverage with SA-DPCT (except applu). 

Is it important to emphasize that a coverage value close to 
one does not implicitly correspond to a high performance in 
terms of speedup. In fact, in Figure 5f, swim achieves the 
worst speedup with SA-DCPT and, on the other hand in Figure 
5h, the same algorithm obtains the best coverage. Our guess is 
that if the algorithm spends too much time discovering the next 
elements to prefetch, as consequence it might increase the 
execution time, therefore lowering its speedup. 

 

VI.  CONCLUSION 

The major contribution of this paper is the development of 
three new types of prefetching, studied with different tunings. 
The first new class is an evolution of the sequential prefetching 
with an adaptive window. Several variants have been 
implemented, such as DM-Adaptive and M-Adaptive. The 
second group includes a DCPT-based prefetcher with partial 
matching and a data structure with different design. Finally, we 
proposed a combination of those two algorithms, integrating 
an adaptive strategy together with a delta correlation (WA-
DCPT and SA-DCPT).  

Even though DCPT-P outperforms all the other prefetching 
algorithms, we believe that adopting solutions such as WA-
DCPT or SA-DCPT represents a good compromise in those 
cases when the type of benchmark is unknown. Our initial 
expectations about these two algorithms were higher than the 
actual results. In fact, we thought that embedding both 
algorithms it could be possible to achieve top performances in 
every case, either sequential or not-sequential code.  

 
On overall, the mini-project was a very positive and 

interesting experience, especially to gain detailed knowledge 
in the field of computer architecture. 
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Fig. 5.  (a), (b), (c), (d), (e), (f), (g): Comparison of speedup of benchmarks using different prefetching algorithms, either those developed by us and those 
described in literature. (h): Comparison of coverage of benchmarks using different prefetching algorithms developed by us. 
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