Computer Architecture Mini-Project —Final Report

TDT4260 Computer Architecture Mini-Project:
Development and Evaluation of Different
Prefetchers Using M5 Simulator

Stefano Nichele,

Abstract—In the last 50 years, the number of transistors in
electronic circuits have increased following the More’s Law and
thus, performances of processors have also increaseOn the
other hand, performances of memories have not incesed as
much as microprocessors. In order to reduce this ga other
hardware and software mechanisms have been implemied.
Since microprocessors can execute instructions fastthan when
the actual data will become available from physicaimemory, fast
cache memories have been introduced to keep and ek (when
necessary) the needed data. A key component thatIpe the
interaction between processor, cache and physicalemory is the
prefetcher. Prefetching means predicting which datawill be
needed by the next executed instructions and fetetg it into the
cache memory in a way that it will be available befre it will be
referenced. In this paper we will analyze two diffeent types of L2
prefetching mechanisms suitable for different progam
structures, sequential and not-sequential, and weyt to combine
them together.

I ndex Terms—computer architecture, prefetcher, cache

Tintegrated circuits and electronic components. Gulwsl,
the performances of microprocessors are directiee to the
hosted number of transistors. A direct consequescthat
smaller are the transistors, higher is their dgnsit a chip.
Therefore, the microprocessors manufacturers stdrtethe
early ‘70s a miniaturization process. This trend wascribed
by Intel co-founder Gordon Moore. He guessed thweg t
growth of the number of transistors on integratétuits
would double every two years. Moore's Law [1] tdnout to
be particularly accurate until 2002 (it is stilllidafor FPGAs
and multi-core processors) but physical constraand the
emergence of green computing [2] slowed down thisess.
Nevertheless, even if the size of memories hasimented,
their speed has not improved enough. Memory lateray
become the bottleneck in modern computers’ perfooaa
This situation is also referred amémory wall [3].

I. INTRODUCTION

Last version: April 7th, 2011. This document is ttem as a partial
fulfilment of the course TDT4260 — Computer Ar@dture.

Stefano Nichele is a PhD student at the Norwegiaivéisity of Science
and Technology (nichele@idi.ntnu.no).

Angelo Spalluto is a MsC student at the Norwegianiversity of Science
and Technology (spalluto@stud.ntnu.no).

it

ransistors are semiconductor devices used to bu

Angelo Spalluto

Several mechanisms, such as memory hierarchie©j4},
of-Order (O00) execution, NUMA [4], increase of danmdth
utilization and CMPs [5], have been exploited tdigaite this
phenomenon. The introduction of a memory hieradmnsists
on the incorporation of small and fast cache measdoetween
the processor and the RAM. This is shown in Fidure

Data that is frequently used can be placed in thehe
memory which is physically close by the processod a
therefore can deliver the required information dast.evell
cache is usually small and placed on-chip, L2 ggér than L1
and slightly slower. In CMP architectures, those tevels of
cache are often private to each specific core. &lnesty be a
L3 cache (and even more levels) which can be shamsahg
the cores and placed off-chip.

Now that the hardware architecture supports a tgaento
decrease the memory latency, it is required to emgint a
mechanism to load data from the memory onto théheac
hierarchy, i.e., prefetching.

Prefetching is a speculative technique that aimpréalict
ich data will be used in the future and fetchtemto the
cache memory before it will be required by the CFbis can
be done by detecting patterns in the program ei@gubut
since it is just a mere prediction, the prefetotemm be wrong
and thus pollute the cache and overload the barikdwithe
situation where the data referenced by the CPduad in the
cache is calledhit” and, on the other hand, if the data is not
available in the cache and it has to be loaded fitwenmain
memory there is dmiss”. In other words, an effective
prefetching reduces the number of misses, exptpitiache
properties such as spatial and temporal locality.

Definition 1: Spatial Locality
If a data is accessed, it is likely that other dtaaddresses
nearby will be accessed in the future.

Definition 2: Temporal Locality
If a data is referenced by the CPU, it is possiblat it will
be used again in the future.

RAM

Fig. 1. Memory hierarchy example.

Computer Architecture Mini-Project —Final Report

In chapter 1l a brief explanation of the most commoV). Keeping a fixed size window for the whole pteféng

prefetching algorithms is given. Chapter Il dekes the
techniques that we have implemented and Chapter
illustrates the used methodology. In Chapter Vszubsion of
the results is presented. Finally, Chapter VI codet the
paper.

Il. RELATED WORK

Several mechanisms, such as sequential prefetd®ijhg
stride direct prefetching (SDP) [10], reference dicton
tables (RPT) [11], program
prefetching (PC/DC) [12], delta correlation preitint table
(DCPT) [6] and adaptive prefetching [13], have bstrdied
in the past.

Sequential prefetchingxploits the spatial locality property,

simply issuing the next block whenever a cache nnss

counter/delta correfatio

process is a strong restriction. It is possiblgit@ freedom to
tXe prefetcher to adopt the number of prefetcherhst (the

window size) depending on the local accuracy of the

previously prefetched elements.

In other words, if N subsequent memory blocks theate
been previously prefetched are referenced by thd (@R or
up to a certain threshold), the next time the pobfer will
fetch N+1 memory blocks. If the local accuracy desithe
defined window is lower than the threshold, thefgaher will
reduce the size of the window and select only Neinents.

With some benchmarking programs we noticed thag, tdu
a low sequencing degree, the adaptive window piedetwas
not improving its performances. We decided to imp@at an
algorithm based on prediction of referenced mentmogcks
with delta correlations.

Finally, we decided to combine both algorithms thge in

detected. This can be improved adding a tag bitchvhi & unique prefetcher.

indicates that the cache block was fetched by teéepther.
Unfortunately, not all programs access memory looatin a

In the following paragraphs, the technical detafseach
implementation are described.

sequential way. InNSDP, each time a program counter is

encountered, it is possible to determine the difiee between
the two last referenced memory blocks and calcufaenext
block to fetch simply adding the last required &ddrto the
calculated delta. An improvement to SDPRBT. The main
idea is to save the PC and the relative refereradittess
(initial state). The second time the same PC iglled, the
delta is calculated (training state). The thirdgjra new delta
is calculated and, if it matches with the previdbs, prefetcher
starts to operate (prefetching stat®)C/DC uses a global
history buffer (GHB) to store the chronology of kawiss. The
entry in the GHB is connected with the previous dhd
calculated deltas are stored in a separate t&II®T stores,
for each PC, a certain number of computed deltdsifithere
is a match between the last two deltas and alld#itas that
previously occurred, than the prefetcher calculdbes next
memory addresses to fetch based on the previousnhis
Finally, adaptive prefetcherdry to adapt to the specific
situation, being more aggressive and speculativenwtie
prefetching
conservative when the behavior is not as expected.

In the beginning, in order to develop a level 2 heac
prefetcher that has decent performances on avénageery
situation, it is necessary to study the behavior eafch
benchmark available in the “SPEC CPU2000" suiteiclvlis
used to carry out the tests. To do so, we haveuts@dhe
given sequential prefetcher, to understand the esegjng
degree of the memory locations accessed by thehbear&

IMPLEMENTED PREFETCHERS

is performing positively and being mor

A. Fixed Sequential Prefetching

Even though the results of Fixed Sequential Prifetcare
widely known in literature, we have decided to ubés
algorithm, in order to extrapolate the degree gusecing for
each benchmark. The strategy adopted in this plefetis
quite straightforward and it uses only the conaditiock size
to predict the possible future addresses requésis. block
size is the area that contains a specified numbeormtiguous
pages, used to exploit spatial locality. The dinem®f block
size is tricky to calculate. In fact, if the valigetoo high, it
affects cache performances and interconnectionvadtid By
contrary, if the size is too low, the sequentiglogithm might
issue less requests than those needed. In ouritaigpmwe
have used the value proposed in the given examifpkheo
mini-project guide [7].

The used sequential algorithm works as follows: vever a
miss occurs, it prefetches the N blocks followihg tnissing
block, whereN is thedegree of prefetchingThe number of

eolocks issued after a miss remains constant forwhele

execution of the program.

Moreover, the algorithm checks if the address iéehto
issue is not already present inside the cache dhanMiss
Information Status Holding Register (MSHR). Thistifer
control allows reducing the amount of transferredtad
therefore alsinterconnection bandwidtandcache pollution

B. Sequential Aggressive Adaptive Window Prefetcher

The aggressive sequential adaptive algorithm [E3Jam
improvement of the previous one and it also allewgloiting

programs. Afterwards, we have modified the seqakntibetter the sequencing of each benchmark. The ingitation

prefetcher increasing the “prefetched window” (thenber of
subsequent prefetched memory blocks at each aejatiom 1
to 6 (the results are shown in Figure 4 and deadrib Section

of this approach requires more memory than the esgal
version. The main benefit of this algorithm is do& window

Computer Architecture Mini-Project —Final Report

CPU

[

)

Cache L2(hit cache

, hit prefetch, miss)

|

]

I

|

EN N m m] we[n fm] (w]| [w]n][n He [He [m | u
[L-0][L-1 |L=1| [L-0] [L-=0] [L=1] |L=0\ |L=1\ L-0 |
|Th-1HTh—I||T [Th-1] [Th-2] [Th-1] [Th-1] [Th-2| [Th-2] ThS |
[W-1][WwW-1][W- [w-2] [w-3] [w-2][w-2] [w-3 [wW-3]

winie e

W=

fQL-Umr

Fig. 2. Example of Sequential Aggressive Adaptiedow Prefetcher.

that is dynamically adjusted to the specific benatmat
runtime. The Adaptive prefetcher changes the degk
prefetching according to the previous value of wiadow.
Hence, it increases the window only when it is sine the
next contiguous blocks might have a high probabili be
used by CPU. In this way, the algorithm providediféerent
degree of prefetching while running the same bermchm

In order to increase the reliability of the curremdow, the
adaptive algorithm introduces the conceptshwésholdand
lock window The algorithm uses these two values
constraints to respect before updating the valies efindow.

When the algorithm receives a miss or hit, it penf®
prefetching for the following N blocks, where Ntie value of
dynamic window. Moreover, the algorithm sets

for more steps (L iterations, where L is the humbktimes
that the window is locked and cannot be modified).

If after L times the window is still valid (accunats greater
or equal than the threshold), the algorithm inceeabe width
of the window. Otherwise, the first time that thecaracy is
lower than the threshold, the window will be imnedly
decreased and the L count will restart.

Figure 2 shows an example of Aggressive Sequential
aAdaptive algorithm. The prefetcher receives the uests
issued by CPU throughout L2 cache (it can be areitetch, a
miss or a hit cacheMit prefetchis a situation when a hit
occurs and the tag bit is set. This means thaatlizess was

théssued before by the prefetcher (blue squad@)cachemeans

correspondingtiag bit in the cache block for those requestshat the address is present inside L2 cache withllatag bit

issued by the prefetcher. After that, it remaimsaliistening
statefor the next N requests (might be hits or misses).

In this state, it counts how many hits have the hidgset,
hence, how many of them have been issued by tHetgher

(green square). Thmissrequest indicates that an address is
not found in L2 cache (red square). Figure 2 alsows for
each request, the value of: curramdow (W), threshold(Th)
andlock flag (L). The example uses a max value of L equal to

(it discards those hits withotdag bitset). The calculated value two and Th=W-1 (when W=1, Th is also one).

represents thaccuracyof the previous window or, in other

words, how many of N requests issued by prefetohee been
used by CPU. After that, the value of N for nexg¢fptching
might increase or decrease. To do that, the algoritompares
the accuracy value with a threshold. If the accpiaqreater
or equal to the threshold, it means that the prbiieg
achieved a good result and it will work again wihme

Initially, the values of W and Th are equal to ovihen the
first hit occurs, the prefetcher issues only orqpuest that turns
out to be a good prefetching (grey square).

Since L<2, before increasing the window anothep st
required (with W=1). The first time with W=2, onlgne
request turns out to be a good prefetching butahiglition is
still valid because Th=1 and it still satisfies tteguirements

window size or even more sequencing (bigger window}# of good prefetching >= threshold). The secomgetiwith
Otherwise, it means that the level of sequencintpénrunning W=2, the algorithm performs again successfully anghdates
code is decreasing (smaller window). There might ebe W=3 (window size is equal to 3). Unfortunately,the next
problem when N continuously oscillates between twanore stage, only one request turns out to be a gooeghifg (one
different window sizes. This can be solved using af the received hit is not triggered by the prefety. Since
conservative technique and keeping the same windimith the threshold is two, the condition is no longetis§i@d and

Computer Architecture Mini-Project —Final Report

the size of window is reduced (W=2). Thereaftere thnumber of stored PCs (an increase in one is reflees a

algorithm works as before, restarting from W=2. Timext

stages show that the algorithm reaches window ewguéilree

and four but, with W=4, the number of good prefetth
addresses is not sufficient to satisfy the corradpg

threshold (Th=3).

decrease in the other).

Sometimes, the deltas are not perfectly matching te
required addresses are very close by. An improvethahcan
be introduced if no pattern repetitions are fouadPartial
Matching The aim of PM is to reduce the spatial distanice o
the delta sequence and identify similar patterrigs Ts done

As shown in the example, the value used as thréshdly masking the less significant bits of the deltasd

represents a good tuning to enhance the perforraanfcthe
whole algorithm. The final value has been choseer ahany
tests.

It is important to remark that prefetching does potur
until all the elements inside the window have belkacked (P
elements = #hits + #misses). This solution is da#lggressive
sequential adaptive because it issues a prefeteighg after
the end of each window, either if the last item \aalsit or a
miss. Besides, two other less aggressive approdehesbeen
studied.

The first approach, calledVliss-Adaptive (M-Adaptive),
issues prefetching only when (once the checks emptavious
window have finished) the first miss occurs. Evelthis case,
P = #hits + #misses.

The second approach, call&iscard Miss-AdaptivdDM-
Adative), issues a prefetching immediately after finst miss
occurs inside the window (P = H, where H are dnity).

Even if those two last approaches seem more rebksyee
decided to use the aggressive solution becausedhieved
results were better.

C. Delta Correlation Prediction Tables (DCPT) Prefetch

Delta Correlation Prediction Table [6] is a techuqgthat
combines the main principles of RPT and PC/DCaWes, for
each program counter that produces a memory regthest
deltas between subsequent requested memory bly¢kk.
those deltas, it is possible to keep track of th#tepn with
which the program accesses memory. If a repetfiattern is
found, DCPT calculates the address of the memargkhihat
most likely will be required at the next executiointhe same
instruction and therefore deliver it in advanceisThechanism
is implemented using a table that stores the Pnogtaunter
(PC) of the executed instruction, the address &f ldst
accessed memory block, the history of deltas inireular
buffer and a pointer to the last delta.

In literature, DCPT stores also the last prefetchddress.
In our implementation we have ignored this fieldorder to
reduce the size of the table. In our opinion, theklof this
field is mitigated by the check of the presenceaofertain
memory block in cache before the actual prefetclfinghay
happen that the memory block is still in the buffeiting to
be loaded in the cache). When the instruction with same
PC is executed again, it is possible to travel bacéls in the
deltas table, searching for equal delta patteras fheviously
occurred. Tuning and adjustments are requiredderoto find
the balance between size of the table and perfaresan
Important parameters are the number of stored <lala the

comparing only the most significant ones.

Mem addreses

Deltas 8 10 9 10 8 ?
Binary representation 1000 1010 1001 1010 1000

2bits masking 1000 1000 1000 1000 1000
8 8 8 8 8 8

Fig. 3. Example of DCPT with partial matching.

In Figure 3, without bit masking the two last dslf® and 8
are not found in the delta stream and the prefetisheot able
to predict which memory block will be useful in thdure. It
is evident that, even if there is no perfect matghiall the
deltas have close values. It may be beneficial refefch a
memory block calculated with an enough accurategadel
Hiding the least two significant bits of the deftieam, it is
possible to find apartial” matching of the last two masked
deltas (8 and 8) with some previous values and tious
calculate the following element to deliver.

D. Adaptive Delta Correlation Prediction Table (WA-DTP
and SA-DCPT) Prefetcher

In this section two different approaches to combine
Sequential Aggressive adaptive Prefetcher and D@GRVe
been proposedWindow Adaptive-DCPT(WA-DCPT) and
Switch Adaptive-DCPTSA-DCPT).

WA-DCPT introduces a different window for each PC
stored in the Prediction Table. When DCPT needsdoe a
prefetching for a specific PC, it delivers alsoth# subsequent
blocks, according to its window size. This solaoticompared
with DCPT, has a more memory demanding data stmictu
because it also needs to store the value of windmssciated
for each PC. This value is extremely importantause, when
the algorithm uses again the same PC, it needslitelagain
the same window size used before. Thus, each time t
prefetcher identifies a new PC, it saves the previwindow
and it loads the new values of window and threshgét, the
rules to update the window are the same explainediaptive
sequential algorithm.

SA-DCPT uses a different strategy. It tries to adhap best
algorithm for each benchmark, exploiting the besedif both
sequential adaptive and DCPT. Every time the prhést
receives a request by L2 cache, it checks the muvadue of
window and if it is less than specific thresholdit employs
DCPT, otherwise it uses the aggressive adaptiveritign.
The value of window used to switch from an algaritto

Computer Architecture Mini-Project —Final Report

—4—ammp

_m2rt110
art470

e twolf

g SWIm
bzip2_source
bzip2_graphic
apsi
bzip2_program

galgel

applu

wupwise

1

Fig. 4. Comparisoof the behavior of different benchmarks. The sizthe
prefetched static window hasdn varied from 1 to 6. Each edge of
hexagon represents a window size and the heigtiteohexagon represe
the correspondent speedup.

another represents the main issue of this algoriffnimm our
results, we have observed that the best windownpetex for
switching among benchmarks is W=4.

IV. METHODOLOGY

To test the performances of the different prefatsheve
have run the SPEC CPU2000 benchmarking suite uwider
simulator. The system architecture is an OoO CPd Afpha
21264 microprocessor, 32kB L1 cache (without posfiel)
and 1MB L2 cache [7].

The L2 cache prefetcher is notified every time ¢hiera hit
or a miss in L2 cache. The size of the cache bisd&dbytes
and the maximum number of pending prefetch requeste0

simulations on Virtual
System. The package is described in [7].

galgel

V. DISCUSSION OF THERESULTS

The results presented in this paragraph are olotaiming
Machines with Linux Operatin

A. Comparison of Sequential Prefetching algorithmshwit
fixed size windows

The radar graph in Figure 4 shows a comparisonhef t
behavior for each benchmark. Each corner of theadmn
illustrates the speedup achieved by a static sdiglien
algorithm with fixed size windows prefetching.

It is notable that benchmarks suchvaspwise applu and
have considerable results with this algorithm.
Moreover, the performances of those benchmarkshthlig
increase with the size of the window. In other tenarks

(swim bzip2_sourcgbzip2_graphicapsi bzip2_progranthe

performances are steadily around the same value.
Unlike the previous benchmarlkanmpdoes not perform as
expected using a sequential prefetcher with a fisik

window and it even decreases the performances avidger
window. The obtained performances are also sligldlyer
with art110, art470 andtwolf.

We think that to obtain good results in the whaldes we
need to develop a hybrid strategy that uses bajphesgial and
not-sequential algorithms.

B. Adaptive Window

The graph in Figure 5a compares the behavior déreint
aggressive adaptive sequential algorithm8DAPTIVE-
MaxWinN using different maximum windows’ sizeNY
Additionally, the best results for the sequentigloathm are
also presentedBEST-SEQUENTIAL Among the different
adaptive prefetchers, on average, the best perfa@saare

(MAX_QUEUE_SIZE). The simulated CPU clock runs atychieved using an adaptive algorithm with a maxinsize of

2GHz while the memory bus has a frequency of 400MHe
size of the physical memory is 256 MB.

The prefetching algorithm is mainly composed byeéhr
functions: prefetch_inif prefetch_access and
prefetch_completeModifying those functions it is possible to
change the prefetcher's behavior. The first
(prefetch_init) is called before the first accessrtemory and
it contains all the initializations of the declaréata structures.
The second function (prefetch_access) is the maiction
which is called every time the prefetcher is infedrthat the
CPU has accessed the L2 cache through the L1 ¢aither
miss). Inside this function the actual prefetch uesy is
executed through a call to the functimsue_prefetchwhich
gueues a specific address intobaffer. Finally, the last
function (prefetch_complete) informs the prefetclibat a
previously queued request for a memory addressbieas
accomplished and the actual memory block has atriwehe
L2 cache.

12. According to our tests, using a window greahan this
value, the performances are steady. The resultanohp
art110 andart470 confirm the trend shown in section A (low
sequencing). In fact, an increase of the max sfzeimdow
does not improve the speedup.

Figure 5b introduces the results of other two vasaof

functioAdaptive Sequential:M-Adaptive and DM-Adaptive The

achieved results are not better than the Aggressdeptive
(with MaxWin=12). As expected, these two algorithms
produce lessrhisses’and ‘prefetchers issued’In fact, since
the prefetcher issues requests only when a missrodcthe
first miss inside the window for DM-Adaptive, thigst miss
after the window in M-Adaptive), it reduces the whamount

of misses.

C. Adaptive vs DCPT vs DCPT-P

The graph in Figure 2c compares the best adaptive
algorithm (max window size of 12) with DCPT and DIGP.

Computer Architecture Mini-Project —Final Report

The chart illustrates that fammpthe DCPT-P prefetcher
the adaptive.

outperforms almost twice better than
Furthermore, for all other benchmarks the perforreanare

similar or oscillating inside a limited interval sfexpected, the
results of DCPT-P are slightly better than DCPTisThsult is

also present in literature [14].

In order to use a data structure smaller than &#bhave
used a table composed by 16 deltas and 97 PCheFRudre,
for DCPT-P we have used a masking of 8 bits. Adogrdo
[14], masking more that 12 bits does not produgeSpeedup
enhancement. In our tests, we have not observéeratites
between a 8 bit or 12 bit masking.

D. Adaptive Delta Correlation Prediction Table (WAGBT
and SA-DCPT)

Before comparing WA-DCPT and SA-DCPT, we have trie

to perform some tunings in order to achieve be#sults.

F. Comparison overview

The graph in Figure 5g illustrates the behavior atif
developed algorithms together with reference pcbfats
available in literature. An important remark is tthaur
implementation of DCPT-P outperforms the refereDEPT-
P. We believe that this result is achieved becassare using
a different implementation and data structure.

G. Analysis of Developed Prefetchers’ Coverage

Coverage is an
prefetchers. It represents how many cache missgsctuld
have occurred without prefetching are avoided. Thas
coverage value close to 1 means a lower numberacdtiec
misses.

In Figure 5h, an analysis of the coverage for theetbped

In WA-DCPT, the number of PCs and deltas has be prefetcher is shown. Benchmarks with low sequenangmp,

varied (all configurations are smaller than 8KB) falows:

artl10 and art470) have a higher coverage with DEPDn

7x178 10x140and14x110 Respectively, the first value is thethe other hand, benchmarks with high sequencing heiter

number of deltas and the second value is the nuwibBCs.
Best results have been achieved using 14 deltabyustsated
in Figure 5d. This tuning is compliant with the uks
presented in [15].

In SA-DCPT we tried to vary the triggering event the
switching between the combined algorithms. If thiedow
size is less than a specific threshold, DCPT isl u€gherwise
Aggressive Adaptive is utilized. Threshold has beested

coverage with SA-DPCT (except applu).

Is it important to emphasize thatcaveragevalue close to
one does not implicitly correspond to a high perfance in
terms of speedup In fact, in Figure 5fswim achieves the
worst speedup with SA-DCPT and, on the other harielgure
5h, the same algorithm obtains the best coveragegQess is
that if the algorithm spends too much time discimgethe next
elements to prefetch, as consequence it might aserghe

with values from 1 to 4. Unlike WA-DCPT, the ChOSEIexecution time, therefore |owering its Speedup'

configuration is 16x97 (the data structure is ddfe). We
noticed that the best speedup is achieved with redaw
threshold equal to 4. The results are presentdeigare 5e.
For greater values, SA-DCPT behaves as a hormallDCP

VI. CONCLUSION

Considering only the best results (SA-DCPT_16x97-W The major contribution of. this paper is .the gleveiept of
and WA-DCPT_14x110), both algorithms have the santhree new types of prefetching, studied with défertunings.

behavior for all benchmarks excepivolf and ammp
(negligible difference).

E. Comparison of developed prefetchers

The graph in Figure 5f is a summary of the perforces
achieved by all developed algorithms, suchFased Size
Sequential Prefetche(BEST_SEQUENTIAL), Aggressive
Adaptive Window Sequential PrefetchgfADAPTIVE-
MaxWin12), Delta Correlation Prediction Table with Partial

The first new class is an evolution of the seqatptiefetching

with an adaptive window. Several variants have been

implemented, such as DM-Adaptive and M-Adaptive.eTh
second group includes a DCPT-based prefetcher prthial
matching and a data structure with different dedgnally, we
proposed a combination of those two algorithmsggrating
an adaptive strategy together with a delta coimla(WA-
DCPT and SA-DCPT).

Even though DCPT-P outperforms all the other poéieg
algorithms, we believe that adopting solutions sashWA-

important statistic when evaluating

Matching (DCPT-P_16x97) an&witch Adaptive DCPT{SA-
DCPT_16x97-W4). Since the results of SA-DCPT and-W/
DCPT are close by, we decided to use SA-DCPT in tl
following comparisons, also because it perfornghsly better
with ammpbenchmark.

The results in Figure 5f show that the DCPT-Paitst the
best performances. It is important to highlightttheght after
DCPT-P, the second best is SA-DCPT. In fact, itfqrens
better than the other algorithms except $arim benchmark.
SA-DCPT is a good compromise when there is a situatith
both sequential and not-sequential executions énrtimning
programs at the same time.

DCPT or SA-DCPT represents a good compromise isetho
cases when the type of benchmark is unknown. Citialin
expectations about these two algorithms were hitjieem the
actual results. In fact, we thought that embeddbah
algorithms it could be possible to achieve top @aneinces in
every case, either sequential or not-sequentia.cod

On overall, the mini-project was a very positivedan
interesting experience, especially to gain detakedwledge
in the field of computer architecture.

Computer Architecture Mini-Project —Final Report

1,2 |y BEST-SEQUENTIAL gy ADAPTIVE-MaxWin? gy ADAPTIVE-M=xWinl0 gy ADAPTIVE-Max\WinlZ 1,2 7 B ADAPTIVE MaxWin1z B HADAFTIVE [DMEADARTIVE

a a
E] E]
= =
e @
] o
a. a
w w
L2 [ADAPTIVE-MaxWin12 m DCPT_16%97 i DEPT-P_16%07 LA | WADCPT_7x178 i WA-DCPT_10x140 [WA-DCPT 14110
16 7
14 7
=3 o
= 'a
k]
] 8
e =
Wi wi
Benchmark
(©)
147 | it o] W SFDGPT ARSI W2 = [BESTSEQUENTIAL g ADAPTIVEMzxWinl2 g DCPT-P_1687 g SADCPT_16x87-W4
1 15
L2 [SA-DCPT_16x97-W3 [SA-DCPT_16x97-W4
14 7
1] o
s g
2 os 3
g @
o @
o =
@ g | I
04 7
0,2
o
Q o o & & 3 > & &
‘5\6‘ o é“‘\ e i & ¢¢ & & & &
& ¢ & &
& &
= < <
Benchmark Benchmark
(e) ®
s | TAGGED mRPT m OCPT m DCPTP 1 | ADAPTIVEMaWinl2 gy DCPT-P_IGIG7 gy SA-DCPT_16x37-W4
LE L I | BESTSEQUENTIAL gy ADAPTIVEMaxWinl2 g SA-DCPT_16x37-Wd gy DCPT-P_16:07
1,5 7

Coverage

Speedup

Fig. 5. (a), (b), (c), (d), (&), (), (g): Compson of speedup of benchmarks using different mlfeg algorithms, either those developed by us and
described in literature. (h): Comparison of coverafjbenchmarks using different prefetching al¢ponis developed by us.

Computer Architecture Mini-Project —Final Report

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

[10]

REFERENCES

G. E. Moore, Cramming more Components onto Integratircuits,
Electronics, 38(8), April 9, 1965.

A. lordan, Introduction to Green Computing and Asyetric multicore
processors, TDT4260 Computer Architecture Lecturmtedl NTNU,
March 25, 2011

W.A. Wulf and S.A. McKee, Hitting the Memory Walmplications of
the Obvious, Computer Architecture News, vol. 28, b, Mar. 1995,
pp. 20-24

A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjervik, O. O.
Storaasli, State-of-the-art in heterogeneous comgutSci. Program.,
Vol. 18 (January 2010), pp. 1-33.

M. Jahre, Managing Shared Resources in Chip Moltggssor Memory
Systems.: NTNU 2010 (ISBN 978-82-471-2287-7) 238
Doktoravhandlinger ved NTNU (159)

M. Grannaes, Reducing Memory Latency by Improvingséurce
Utilization.: NTNU 2010 (ISBN 978-82-471-2177-8) 24 s.
Doktoravhandlinger ved NTNU (106)

A. C. lordan, TDT4260 Computer Architecture Minieict Guidelines,
January 10, 2011

A. C. lordan, M5 Simulator System.TDT4260 Compuechitecture.
User Documentation, February 4, 2011

A. J. Smith, Cache memories, ACM Comput. Surv., tdl, no. 3, pp.
473-530, 1982

J. W. C. Fu, J. H. Patel, and B. L. Janssens. &Sttickcted prefetching
in scalar processors. In MICRO 25: Proceedingshef 25th annual
international symposium on Microarchitecture, pab@a-110, 1992

[11]

(12]

[13]

[14]

[15]

T.-F. Chen and J.-L. Baer, Effective hardware-badath prefetching
for high-performance processors, Computers, IEEEBnJactions on,
vol. 44, pp. 609-623, May 1995

K. J. Nesbit and J. E. Smith, Data cache prefetchising a global
history buffer, High-Performance Computer Architaet International
Symposium on, vol. 0, p. 96, 2004

F. Dahlgren, M. Dubois, and P. Stenstrom. Fixed auhptive
sequential prefetching in shared memory multipreces In Parallel
Processing, 1993. ICPP 1993. International Conéeresm, volume 1,
pages 56-63, Aug. 1993.

M. Grannaes, M. Jahre and L. Natvig. Multi-levelréisare Prefetching
Using Low Complexity Delta Correlating Predictioables with Partial
Matching. High Performance Embedded Architectuned &ompilers
LNCS, 2010, Volume 5952/2010, 247-261.

M. Grannaes, M. Jahre and L. Natvig. Storage HffitiHardware
Prefetching using Delta Correlating Prediction Eabl In Data
Prefetching Championships (2009)

Stefano Nicheleis a PhD student at the Norwegian University aéSce and
Technology, under the supervision of Prof. Gunnaftel He works with Bio-
Inspired Architectures and Unconventional CompuotatiHe obtained hig
MSc degree in Computer Science at Insubria Unityersltaly.

Angelo Spallutois a MSc student at the Norwegian University ofeSce
and Technology. He obtained his BSc at Politecdicborino — Italy — under|
the supervision of Prof. Silvia Chiusano.

