
Computer Architecture Mini-Project –Final Report

1

Abstract—In the last 50 years, the number of transistors in
electronic circuits have increased following the Moore’s Law and
thus, performances of processors have also increased. On the
other hand, performances of memories have not increased as
much as microprocessors. In order to reduce this gap, other
hardware and software mechanisms have been implemented.
Since microprocessors can execute instructions faster than when
the actual data will become available from physical memory, fast
cache memories have been introduced to keep and deliver (when
necessary) the needed data. A key component that helps the
interaction between processor, cache and physical memory is the
prefetcher. Prefetching means predicting which data will be
needed by the next executed instructions and fetching it into the
cache memory in a way that it will be available before it will be
referenced. In this paper we will analyze two different types of L2
prefetching mechanisms suitable for different program
structures, sequential and not-sequential, and we try to combine
them together.

Index Terms—computer architecture, prefetcher, cache

I. INTRODUCTION

ransistors are semiconductor devices used to build
integrated circuits and electronic components. Obviously,

the performances of microprocessors are directly related to the
hosted number of transistors. A direct consequence is that
smaller are the transistors, higher is their density on a chip.
Therefore, the microprocessors manufacturers started in the
early ‘70s a miniaturization process. This trend was described
by Intel co-founder Gordon Moore. He guessed that the
growth of the number of transistors on integrated circuits
would double every two years. Moore’s Law [1] turned out to
be particularly accurate until 2002 (it is still valid for FPGAs
and multi-core processors) but physical constraints and the
emergence of green computing [2] slowed down this process.
Nevertheless, even if the size of memories has incremented,
their speed has not improved enough. Memory latency has
become the bottleneck in modern computers’ performance.
This situation is also referred as “memory wall” [3].

Last version: April 7th, 2011. This document is written as a partial

fulfillment of the course TDT4260 – Computer Architecture.
Stefano Nichele is a PhD student at the Norwegian University of Science

and Technology (nichele@idi.ntnu.no).
Angelo Spalluto is a MsC student at the Norwegian University of Science

and Technology (spalluto@stud.ntnu.no).

Several mechanisms, such as memory hierarchies [4], Out-

of-Order (OoO) execution, NUMA [4], increase of bandwidth
utilization and CMPs [5], have been exploited to mitigate this
phenomenon. The introduction of a memory hierarchy consists
on the incorporation of small and fast cache memories between
the processor and the RAM. This is shown in Figure 1.

Data that is frequently used can be placed in the cache
memory which is physically close by the processor and
therefore can deliver the required information faster. Level1
cache is usually small and placed on-chip, L2 is bigger than L1
and slightly slower. In CMP architectures, those two levels of
cache are often private to each specific core. There may be a
L3 cache (and even more levels) which can be shared among
the cores and placed off-chip.

Now that the hardware architecture supports a technique to
decrease the memory latency, it is required to implement a
mechanism to load data from the memory onto the cache
hierarchy, i.e., prefetching.

Prefetching is a speculative technique that aims to predict
which data will be used in the future and fetches it into the
cache memory before it will be required by the CPU. This can
be done by detecting patterns in the program execution, but
since it is just a mere prediction, the prefetcher can be wrong
and thus pollute the cache and overload the bandwidth. The
situation where the data referenced by the CPU is found in the
cache is called “hit” and, on the other hand, if the data is not
available in the cache and it has to be loaded from the main
memory there is a “miss” . In other words, an effective
prefetching reduces the number of misses, exploiting cache
properties such as spatial and temporal locality.

Definition 1: Spatial Locality
If a data is accessed, it is likely that other data in addresses

nearby will be accessed in the future.

Definition 2: Temporal Locality
If a data is referenced by the CPU, it is possible that it will

be used again in the future.

Fig. 1. Memory hierarchy example.

TDT4260 Computer Architecture Mini-Project:
Development and Evaluation of Different

Prefetchers Using M5 Simulator

Stefano Nichele, Angelo Spalluto

T

Computer Architecture Mini-Project –Final Report

2

In chapter II a brief explanation of the most common
prefetching algorithms is given. Chapter III describes the
techniques that we have implemented and Chapter IV
illustrates the used methodology. In Chapter V a discussion of
the results is presented. Finally, Chapter VI concludes the
paper.

II. RELATED WORK

Several mechanisms, such as sequential prefetching [9],
stride direct prefetching (SDP) [10], reference prediction
tables (RPT) [11], program counter/delta correlation
prefetching (PC/DC) [12], delta correlation prediction table
(DCPT) [6] and adaptive prefetching [13], have been studied
in the past.

Sequential prefetching exploits the spatial locality property,
simply issuing the next block whenever a cache miss is
detected. This can be improved adding a tag bit which
indicates that the cache block was fetched by the prefecther.
Unfortunately, not all programs access memory locations in a
sequential way. In SDP, each time a program counter is
encountered, it is possible to determine the difference between
the two last referenced memory blocks and calculate the next
block to fetch simply adding the last required address to the
calculated delta. An improvement to SDP is RPT. The main
idea is to save the PC and the relative referenced address
(initial state). The second time the same PC is recalled, the
delta is calculated (training state). The third time, a new delta
is calculated and, if it matches with the previous, the prefetcher
starts to operate (prefetching state). PC/DC uses a global
history buffer (GHB) to store the chronology of each miss. The
entry in the GHB is connected with the previous and the
calculated deltas are stored in a separate table. DCPT stores,
for each PC, a certain number of computed deltas and, if there
is a match between the last two deltas and all the deltas that
previously occurred, than the prefetcher calculates the next
memory addresses to fetch based on the previous history.
Finally, adaptive prefetchers try to adapt to the specific
situation, being more aggressive and speculative when the
prefetching is performing positively and being more
conservative when the behavior is not as expected.

III. IMPLEMENTED PREFETCHERS

In the beginning, in order to develop a level 2 cache
prefetcher that has decent performances on average in every
situation, it is necessary to study the behavior of each
benchmark available in the “SPEC CPU2000” suite, which is
used to carry out the tests. To do so, we have executed the
given sequential prefetcher, to understand the sequencing
degree of the memory locations accessed by the benchmark
programs. Afterwards, we have modified the sequential
prefetcher increasing the “prefetched window” (the number of
subsequent prefetched memory blocks at each iteration) from 1
to 6 (the results are shown in Figure 4 and described in Section

V). Keeping a fixed size window for the whole prefetching
process is a strong restriction. It is possible to give freedom to
the prefetcher to adopt the number of prefetched items (the
window size) depending on the local accuracy of the
previously prefetched elements.

In other words, if N subsequent memory blocks that have
been previously prefetched are referenced by the CPU (all or
up to a certain threshold), the next time the prefetcher will
fetch N+1 memory blocks. If the local accuracy inside the
defined window is lower than the threshold, the prefetcher will
reduce the size of the window and select only N-1 elements.

With some benchmarking programs we noticed that, due to
a low sequencing degree, the adaptive window prefetcher was
not improving its performances. We decided to implement an
algorithm based on prediction of referenced memory blocks
with delta correlations.

Finally, we decided to combine both algorithms together in
a unique prefetcher.

In the following paragraphs, the technical details of each
implementation are described.

A. Fixed Sequential Prefetching

Even though the results of Fixed Sequential Prefetching are
widely known in literature, we have decided to use this
algorithm, in order to extrapolate the degree of sequencing for
each benchmark. The strategy adopted in this prefetcher is
quite straightforward and it uses only the concept of block size
to predict the possible future addresses requests. The block
size is the area that contains a specified number of contiguous
pages, used to exploit spatial locality. The dimension of block
size is tricky to calculate. In fact, if the value is too high, it
affects cache performances and interconnection bandwidth. By
contrary, if the size is too low, the sequential algorithm might
issue less requests than those needed. In our algorithm, we
have used the value proposed in the given example of the
mini-project guide [7].

The used sequential algorithm works as follows: whenever a
miss occurs, it prefetches the N blocks following the missing
block, where N is the degree of prefetching. The number of
blocks issued after a miss remains constant for the whole
execution of the program.

Moreover, the algorithm checks if the address intended to
issue is not already present inside the cache or in the Miss
Information Status Holding Register (MSHR). This further
control allows reducing the amount of transferred data,
therefore also interconnection bandwidth and cache pollution.

B. Sequential Aggressive Adaptive Window Prefetcher

The aggressive sequential adaptive algorithm [13] is an
improvement of the previous one and it also allows exploiting
better the sequencing of each benchmark. The implementation
of this approach requires more memory than the sequential
version. The main benefit of this algorithm is due to a window

Computer Architecture Mini-Project –Final Report

3

that is dynamically adjusted to the specific benchmark at
runtime. The Adaptive prefetcher changes the degree of
prefetching according to the previous value of the window.
Hence, it increases the window only when it is sure that the
next contiguous blocks might have a high probability to be
used by CPU. In this way, the algorithm provides a different
degree of prefetching while running the same benchmark.

In order to increase the reliability of the current window, the
adaptive algorithm introduces the concepts of threshold and
lock window. The algorithm uses these two values as
constraints to respect before updating the value of its window.

When the algorithm receives a miss or hit, it performs
prefetching for the following N blocks, where N is the value of
dynamic window. Moreover, the algorithm sets the
corresponding tag bit in the cache block for those requests
issued by the prefetcher. After that, it remains in a listening
state for the next N requests (might be hits or misses).

In this state, it counts how many hits have the tag bit set,
hence, how many of them have been issued by the prefetcher
(it discards those hits without tag bit set). The calculated value
represents the accuracy of the previous window or, in other
words, how many of N requests issued by prefetcher have been
used by CPU. After that, the value of N for next prefetching
might increase or decrease. To do that, the algorithm compares
the accuracy value with a threshold. If the accuracy is greater
or equal to the threshold, it means that the prefetching
achieved a good result and it will work again with same
window size or even more sequencing (bigger window).
Otherwise, it means that the level of sequencing in the running
code is decreasing (smaller window). There might be a
problem when N continuously oscillates between two or more
different window sizes. This can be solved using a
conservative technique and keeping the same window width

for more steps (L iterations, where L is the number of times
that the window is locked and cannot be modified).

If after L times the window is still valid (accuracy is greater
or equal than the threshold), the algorithm increases the width
of the window. Otherwise, the first time that the accuracy is
lower than the threshold, the window will be immediately
decreased and the L count will restart.

Figure 2 shows an example of Aggressive Sequential

Adaptive algorithm. The prefetcher receives the requests
issued by CPU throughout L2 cache (it can be a hit prefetch, a
miss or a hit cache). Hit prefetch is a situation when a hit
occurs and the tag bit is set. This means that the address was
issued before by the prefetcher (blue square). Hit cache means
that the address is present inside L2 cache with a null tag bit
(green square). The miss request indicates that an address is
not found in L2 cache (red square). Figure 2 also shows for
each request, the value of: current window (W), threshold (Th)
and lock flag (L). The example uses a max value of L equal to
two and Th=W-1 (when W=1, Th is also one).

Initially, the values of W and Th are equal to one. When the
first hit occurs, the prefetcher issues only one request that turns
out to be a good prefetching (grey square).

Since L<2, before increasing the window another step is
required (with W=1). The first time with W=2, only one
request turns out to be a good prefetching but this condition is
still valid because Th=1 and it still satisfies the requirements
(# of good prefetching >= threshold). The second time with
W=2, the algorithm performs again successfully and it updates
W=3 (window size is equal to 3). Unfortunately, at the next
stage, only one request turns out to be a good prefeching (one
of the received hit is not triggered by the prefetcher). Since
the threshold is two, the condition is no longer satisfied and

Fig. 2. Example of Sequential Aggressive Adaptive Window Prefetcher.

Computer Architecture Mini-Project –Final Report

4

the size of window is reduced (W=2). Thereafter, the
algorithm works as before, restarting from W=2. The next
stages show that the algorithm reaches window equal to three
and four but, with W=4, the number of good prefetched
addresses is not sufficient to satisfy the corresponding
threshold (Th=3).

As shown in the example, the value used as threshold

represents a good tuning to enhance the performances of the
whole algorithm. The final value has been chosen after many
tests.

It is important to remark that prefetching does not occur
until all the elements inside the window have been checked (P
elements = #hits + #misses). This solution is called aggressive
sequential adaptive because it issues a prefetching right after
the end of each window, either if the last item was a hit or a
miss. Besides, two other less aggressive approaches have been
studied.

The first approach, called Miss-Adaptive (M-Adaptive),
issues prefetching only when (once the checks on the previous
window have finished) the first miss occurs. Even in this case,
P = #hits + #misses.

The second approach, called Discard Miss-Adaptive (DM-
Adative), issues a prefetching immediately after the first miss
occurs inside the window (P = H, where H are only hits).

Even if those two last approaches seem more reasonable, we
decided to use the aggressive solution because the achieved
results were better.

C. Delta Correlation Prediction Tables (DCPT) Prefetcher

Delta Correlation Prediction Table [6] is a technique that
combines the main principles of RPT and PC/DC. It saves, for
each program counter that produces a memory request, the
deltas between subsequent requested memory blocks. With
those deltas, it is possible to keep track of the pattern with
which the program accesses memory. If a repetitive pattern is
found, DCPT calculates the address of the memory block that
most likely will be required at the next execution of the same
instruction and therefore deliver it in advance. This mechanism
is implemented using a table that stores the Program Counter
(PC) of the executed instruction, the address of the last
accessed memory block, the history of deltas in a circular
buffer and a pointer to the last delta.

In literature, DCPT stores also the last prefetched address.
In our implementation we have ignored this field in order to
reduce the size of the table. In our opinion, the lack of this
field is mitigated by the check of the presence of a certain
memory block in cache before the actual prefetching (it may
happen that the memory block is still in the buffer waiting to
be loaded in the cache). When the instruction with the same
PC is executed again, it is possible to travel backwards in the
deltas table, searching for equal delta patterns that previously
occurred. Tuning and adjustments are required in order to find
the balance between size of the table and performances.
Important parameters are the number of stored deltas and the

number of stored PCs (an increase in one is reflected as a
decrease in the other).

Sometimes, the deltas are not perfectly matching but the
required addresses are very close by. An improvement that can
be introduced if no pattern repetitions are found is Partial
Matching. The aim of PM is to reduce the spatial distance of
the delta sequence and identify similar patterns. This is done
by masking the less significant bits of the deltas and
comparing only the most significant ones.

Fig. 3. Example of DCPT with partial matching.

In Figure 3, without bit masking the two last deltas 10 and 8

are not found in the delta stream and the prefetcher is not able
to predict which memory block will be useful in the future. It
is evident that, even if there is no perfect matching, all the
deltas have close values. It may be beneficial to prefetch a
memory block calculated with an enough accurate delta.
Hiding the least two significant bits of the delta stream, it is
possible to find a “partial” matching of the last two masked
deltas (8 and 8) with some previous values and thus to
calculate the following element to deliver.

D. Adaptive Delta Correlation Prediction Table (WA-DCPT
and SA-DCPT) Prefetcher

In this section two different approaches to combine
Sequential Aggressive adaptive Prefetcher and DCPT have
been proposed: Window Adaptive-DCPT (WA-DCPT) and
Switch Adaptive-DCPT (SA-DCPT).

WA-DCPT introduces a different window for each PC
stored in the Prediction Table. When DCPT needs to issue a
prefetching for a specific PC, it delivers also all the subsequent
blocks, according to its window size. This solution, compared
with DCPT, has a more memory demanding data structure
because it also needs to store the value of windows associated
for each PC. This value is extremely important because, when
the algorithm uses again the same PC, it needs to utilize again
the same window size used before. Thus, each time the
prefetcher identifies a new PC, it saves the previous window
and it loads the new values of window and threshold. Yet, the
rules to update the window are the same explained in adaptive
sequential algorithm.

SA-DCPT uses a different strategy. It tries to adapt the best
algorithm for each benchmark, exploiting the benefits of both
sequential adaptive and DCPT. Every time the prefetcher
receives a request by L2 cache, it checks the current value of
window and if it is less than a specific threshold, it employs
DCPT, otherwise it uses the aggressive adaptive algorithm.
The value of window used to switch from an algorithm to

Computer Architecture Mini-Project –Final Report

5

another represents the main issue of this algorithm. From our
results, we have observed that the best window parameter for
switching among benchmarks is W=4.

IV. METHODOLOGY

To test the performances of the different prefetchers, we
have run the SPEC CPU2000 benchmarking suite under M5
simulator. The system architecture is an OoO CPU with Alpha
21264 microprocessor, 32kB L1 cache (without prefetching)
and 1MB L2 cache [7].

The L2 cache prefetcher is notified every time there is a hit
or a miss in L2 cache. The size of the cache block is 64bytes
and the maximum number of pending prefetch requests is 100
(MAX_QUEUE_SIZE). The simulated CPU clock runs at
2GHz while the memory bus has a frequency of 400MHz. The
size of the physical memory is 256MB.

The prefetching algorithm is mainly composed by three

functions: prefetch_init, prefetch_access and
prefetch_complete. Modifying those functions it is possible to
change the prefetcher’s behavior. The first function
(prefetch_init) is called before the first access to memory and
it contains all the initializations of the declared data structures.
The second function (prefetch_access) is the main function
which is called every time the prefetcher is informed that the
CPU has accessed the L2 cache through the L1 cache (hit or
miss). Inside this function the actual prefetch request is
executed through a call to the function issue_prefetch, which
queues a specific address into a buffer. Finally, the last
function (prefetch_complete) informs the prefetcher that a
previously queued request for a memory address has been
accomplished and the actual memory block has arrived in the
L2 cache.

V. DISCUSSION OF THE RESULTS

The results presented in this paragraph are obtained running
simulations on Virtual Machines with Linux Operating
System. The package is described in [7].

A. Comparison of Sequential Prefetching algorithms with
fixed size windows

The radar graph in Figure 4 shows a comparison of the
behavior for each benchmark. Each corner of the hexagon
illustrates the speedup achieved by a static sequential
algorithm with fixed size windows prefetching.

It is notable that benchmarks such as wupwise, applu and
galgel have considerable results with this algorithm.
Moreover, the performances of those benchmarks slightly
increase with the size of the window. In other benchmarks
(swim, bzip2_source, bzip2_graphic, apsi, bzip2_program) the
performances are steadily around the same value.

Unlike the previous benchmarks, ammp does not perform as
expected using a sequential prefetcher with a fixed size
window and it even decreases the performances with a lager
window. The obtained performances are also slightly lower
with art110, art470 and twolf.

We think that to obtain good results in the whole suite, we
need to develop a hybrid strategy that uses both sequential and
not-sequential algorithms.

B. Adaptive Window

The graph in Figure 5a compares the behavior of different

aggressive adaptive sequential algorithms (ADAPTIVE-
MaxWinN) using different maximum windows’ size (N).
Additionally, the best results for the sequential algorithm are
also presented (BEST-SEQUENTIAL). Among the different
adaptive prefetchers, on average, the best performances are
achieved using an adaptive algorithm with a maximum size of
12. According to our tests, using a window greater than this
value, the performances are steady. The results of ammp,
art110 and art470 confirm the trend shown in section A (low
sequencing). In fact, an increase of the max size of window
does not improve the speedup.

Figure 5b introduces the results of other two variants of
Adaptive Sequential: M-Adaptive and DM-Adaptive. The
achieved results are not better than the Aggressive Adaptive
(with MaxWin=12). As expected, these two algorithms
produce less “misses” and “prefetchers issued”. In fact, since
the prefetcher issues requests only when a miss occurs (the
first miss inside the window for DM-Adaptive, the first miss
after the window in M-Adaptive), it reduces the whole amount
of misses.

C. Adaptive vs DCPT vs DCPT-P

The graph in Figure 2c compares the best adaptive

algorithm (max window size of 12) with DCPT and DCPT-P.

Fig. 4. Comparison of the behavior of different benchmarks. The size of the
prefetched static window has been varied from 1 to 6. Each edge of the
hexagon represents a window size and the height of the hexagon represents
the correspondent speedup.

Computer Architecture Mini-Project –Final Report

6

The chart illustrates that for ammp the DCPT-P prefetcher
outperforms almost twice better than the adaptive.
Furthermore, for all other benchmarks the performances are
similar or oscillating inside a limited interval. As expected, the
results of DCPT-P are slightly better than DCPT. This result is
also present in literature [14].

In order to use a data structure smaller than 8Kb, we have
used a table composed by 16 deltas and 97 PCs. Furthermore,
for DCPT-P we have used a masking of 8 bits. According to
[14], masking more that 12 bits does not produce any Speedup
enhancement. In our tests, we have not observed differences
between a 8 bit or 12 bit masking.

D. Adaptive Delta Correlation Prediction Table (WA-DCPT
and SA-DCPT)

Before comparing WA-DCPT and SA-DCPT, we have tried
to perform some tunings in order to achieve better results.

In WA-DCPT, the number of PCs and deltas has been
varied (all configurations are smaller than 8KB) as follows:
7x178, 10x140 and 14x110. Respectively, the first value is the
number of deltas and the second value is the number of PCs.
Best results have been achieved using 14 deltas, as illustrated
in Figure 5d. This tuning is compliant with the results
presented in [15].

In SA-DCPT we tried to vary the triggering event for the
switching between the combined algorithms. If the window
size is less than a specific threshold, DCPT is used. Otherwise
Aggressive Adaptive is utilized. Threshold has been tested
with values from 1 to 4. Unlike WA-DCPT, the chosen
configuration is 16x97 (the data structure is different). We
noticed that the best speedup is achieved with a window
threshold equal to 4. The results are presented in Figure 5e.
For greater values, SA-DCPT behaves as a normal DCPT.

Considering only the best results (SA-DCPT_16x97-W4
and WA-DCPT_14x110), both algorithms have the same
behavior for all benchmarks except twolf and ammp
(negligible difference).

E. Comparison of developed prefetchers

The graph in Figure 5f is a summary of the performances
achieved by all developed algorithms, such as Fixed Size
Sequential Prefetcher (BEST_SEQUENTIAL), Aggressive
Adaptive Window Sequential Prefetcher (ADAPTIVE-
MaxWin12), Delta Correlation Prediction Table with Partial
Matching (DCPT-P_16x97) and Switch Adaptive DCPT (SA-
DCPT_16x97-W4). Since the results of SA-DCPT and WA-
DCPT are close by, we decided to use SA-DCPT in the
following comparisons, also because it performs slightly better
with ammp benchmark.

 The results in Figure 5f show that the DCPT-P obtains the
best performances. It is important to highlight that, right after
DCPT-P, the second best is SA-DCPT. In fact, it performs
better than the other algorithms except for swim benchmark.
SA-DCPT is a good compromise when there is a situation with
both sequential and not-sequential executions in the running
programs at the same time.

F. Comparison overview

The graph in Figure 5g illustrates the behavior of all

developed algorithms together with reference prefetchers
available in literature. An important remark is that our
implementation of DCPT-P outperforms the reference DCPT-
P. We believe that this result is achieved because we are using
a different implementation and data structure.

G. Analysis of Developed Prefetchers’ Coverage

Coverage is an important statistic when evaluating
prefetchers. It represents how many cache misses that could
have occurred without prefetching are avoided. Thus, a
coverage value close to 1 means a lower number of cache
misses.

In Figure 5h, an analysis of the coverage for the developed
prefetcher is shown. Benchmarks with low sequencing (ammp,
art110 and art470) have a higher coverage with DCPT-P. On
the other hand, benchmarks with high sequencing have better
coverage with SA-DPCT (except applu).

Is it important to emphasize that a coverage value close to
one does not implicitly correspond to a high performance in
terms of speedup. In fact, in Figure 5f, swim achieves the
worst speedup with SA-DCPT and, on the other hand in Figure
5h, the same algorithm obtains the best coverage. Our guess is
that if the algorithm spends too much time discovering the next
elements to prefetch, as consequence it might increase the
execution time, therefore lowering its speedup.

VI. CONCLUSION

The major contribution of this paper is the development of
three new types of prefetching, studied with different tunings.
The first new class is an evolution of the sequential prefetching
with an adaptive window. Several variants have been
implemented, such as DM-Adaptive and M-Adaptive. The
second group includes a DCPT-based prefetcher with partial
matching and a data structure with different design. Finally, we
proposed a combination of those two algorithms, integrating
an adaptive strategy together with a delta correlation (WA-
DCPT and SA-DCPT).

Even though DCPT-P outperforms all the other prefetching
algorithms, we believe that adopting solutions such as WA-
DCPT or SA-DCPT represents a good compromise in those
cases when the type of benchmark is unknown. Our initial
expectations about these two algorithms were higher than the
actual results. In fact, we thought that embedding both
algorithms it could be possible to achieve top performances in
every case, either sequential or not-sequential code.

On overall, the mini-project was a very positive and

interesting experience, especially to gain detailed knowledge
in the field of computer architecture.

Computer Architecture Mini-Project –Final Report

7

Fig. 5. (a), (b), (c), (d), (e), (f), (g): Comparison of speedup of benchmarks using different prefetching algorithms, either those developed by us and those
described in literature. (h): Comparison of coverage of benchmarks using different prefetching algorithms developed by us.

Computer Architecture Mini-Project –Final Report

8

REFERENCES

[1] G. E. Moore, Cramming more Components onto Integrated Circuits,
Electronics, 38(8), April 9, 1965.

[2] A. Iordan, Introduction to Green Computing and Asymmetric multicore
processors, TDT4260 Computer Architecture Lecture Notes, NTNU,
March 25, 2011

[3] W.A. Wulf and S.A. McKee, Hitting the Memory Wall: Implications of
the Obvious, Computer Architecture News, vol. 23, no. 1, Mar. 1995,
pp. 20–24

[4] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, O. O.
Storaasli, State-of-the-art in heterogeneous computing, Sci. Program.,
Vol. 18 (January 2010), pp. 1-33.

[5] M. Jahre, Managing Shared Resources in Chip Multiprocessor Memory
Systems.: NTNU 2010 (ISBN 978-82-471-2287-7) 238 s.
Doktoravhandlinger ved NTNU (159)

[6] M. Grannaes, Reducing Memory Latency by Improving Resource
Utilization.: NTNU 2010 (ISBN 978-82-471-2177-8) 242 s.
Doktoravhandlinger ved NTNU (106)

[7] A. C. Iordan, TDT4260 Computer Architecture Mini-Project Guidelines,
January 10, 2011

[8] A. C. Iordan, M5 Simulator System.TDT4260 Computer Architecture.
User Documentation, February 4, 2011

[9] A. J. Smith, Cache memories, ACM Comput. Surv., vol. 14, no. 3, pp.
473–530, 1982

[10] J. W. C. Fu, J. H. Patel, and B. L. Janssens. Stride directed prefetching
in scalar processors. In MICRO 25: Proceedings of the 25th annual
international symposium on Microarchitecture, pages 102-110, 1992

[11] T.-F. Chen and J.-L. Baer, Effective hardware-based data prefetching
for high-performance processors, Computers, IEEE Transactions on,
vol. 44, pp. 609–623, May 1995

[12] K. J. Nesbit and J. E. Smith, Data cache prefetching using a global
history buffer, High-Performance Computer Architecture, International
Symposium on, vol. 0, p. 96, 2004

[13] F. Dahlgren, M. Dubois, and P. Stenstrom. Fixed and adaptive
sequential prefetching in shared memory multiprocessors. In Parallel
Processing, 1993. ICPP 1993. International Conference on, volume 1,
pages 56-63, Aug. 1993.

[14] M. Grannaes, M. Jahre and L. Natvig. Multi-level Hardware Prefetching
Using Low Complexity Delta Correlating Prediction Tables with Partial
Matching. High Performance Embedded Architectures and Compilers
LNCS, 2010, Volume 5952/2010, 247-261.

[15] M. Grannaes, M. Jahre and L. Natvig. Storage Efficient Hardware
Prefetching using Delta Correlating Prediction Tables. In Data
Prefetching Championships (2009)

Stefano Nichele is a PhD student at the Norwegian University of Science and
Technology, under the supervision of Prof. Gunnar Tufte. He works with Bio-
Inspired Architectures and Unconventional Computation. He obtained his
MSc degree in Computer Science at Insubria University – Italy.

Angelo Spalluto is a MSc student at the Norwegian University of Science
and Technology. He obtained his BSc at Politecnico di Torino – Italy – under
the supervision of Prof. Silvia Chiusano.

