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Abstract. In this paper we measure genomic properties in EvoDevo systems, to 

predict emergent phenotypic characteristic of artificial organisms. We describe 

and compare three parameters calculated out of the composition of the genome, 

to forecast the emergent behavior and structural properties of the developed or-

ganisms. The parameters are each calculated by including different genomic in-

formation. The genotypic information explored are: purely regulatory output, 

regulatory input and relative output considered independently and an overall pa-

rameter calculated out of genetic dependency properties. The goal of this work 

is to gain more knowledge on the relation between genotypes and the behavior 

of emergent phenotypes. Such knowledge will give information on genetic 

composition in relation to artificial developmental organisms, providing guide-

lines for construction of EvoDevo systems. A minimalistic developmental sys-

tem based on Cellular Automata is chosen in the experimental work. 

Keywords: Development, Cellular Computation, Emergence, Evolution, Pa-

rameterization of Rule Spaces.  

1 Introduction 

Artificial developmental systems are systems that can be used to grow artificial or-

ganisms, exploiting an indirect genotype to phenotype mapping [9]. Indirect mapping 

between genotype and phenotype enables two organisms with identical genes to de-

velop to diverting phenotypes, caused by factors influencing the development process, 

e.g. interactions with the environment. Several artificial developmental systems take 

inspiration from cellular models [12, 19, 24, 27], where the key element is a cell. The 

way a cell behaves can be represented by gene regulation that encapsulates the rules 

and actions that a cell may perform, e.g. growth, differentiation, death. The result of 

such architecture is a system that can show different developmental behaviors from a 

single cell (zygote) to a multi-cellular organism.  

Even if an artificial developmental process itself can be regulated by very simple 

mechanisms at cellular level, the whole emergent behavior of the system can show 

complex phenotypes with properties of stability or unpredictable self-reorganization. 



Evolutionary Developmental (EvoDevo) systems [15] have been used in a wide varie-

ty of experiments with promising results (e.g. to reach a phenotypic target property 

[24], to execute a computational property emerging from the development of a ma-

chine structure [27] or to develop modular structures [9]), but at the theoretical level 

the amount of knowledge is limited. This work is focused on the underlying proper-

ties of EvoDevo systems and thus does not aim to develop specific organisms with 

specific properties. Rather, we want to gain more knowledge on the dynamics of de-

veloping organisms in relation with the information and representation of the genome 

and gene regulation.   

In this work, the genotypes are represented as a transition rule table, where devel-

opmental actions are defined as function of the neighborhood configuration. In this 

way, it is possible to analyze the different developmental actions and calculate param-

eters obtained from the genome table. We investigate three different genome parame-

ters. The first one takes inspiration from earlier work of Langton [21], using a devel-

opmental λ which is based only on the output of the genomic developmental table. 

The second parameter is the Majority parameter, a measure of regulatory input and 

relative output considered independently. This approach is similar to Neighborhood 

Dominance parameter described in [4]. The third is the Sensitivity parameter, an 

overall measure of the developmental table where table entries are dependent one to 

another, defined by Binder [1, 2]. Every parameter measures a different feature of the 

genome information and thus should be able to describe different phenotypic behav-

iors.  

The article is laid out as follows: background information and motivation for the 

work is given in Section 2. In Section 3 the developmental model used in the experi-

ments is described. Section 4 presents the used parameters in details. Section 5 shows 

the results of the experiments. The discussion of the results is given in Section 6 to-

gether with the conclusions. 

2 Background and Motivation 

Artificial developmental systems fall within the field of complex systems. In complex 

systems, the focus is on the global behavior rather than on the local behavior of the 

single parts from which the system is built. The interwoven interaction of the system 

components, without the action of a global controller, places such systems in the field 

of emergent computation [13]. 

A CA can be considered as a developing organism, where the genome specifica-

tions and the gene regulation information control the cells’ growth and differentiation. 

The behavior of the CA is represented by the emergent phenotype, which is subject to 

size and shape modifications, according to the cellular changes along the develop-

mental process. Such dynamic developmental systems can show adaptation, self-

modification, plasticity [28] or self-replication [20] properties.   

The works of Wolfram [29] and Langton [21] on the computation of cellular ma-

chines laid a foundation for further research on the possibility of “measuring” proper-

ties of the computation [26] and develop a better understanding of the emergent be-



havior of complex systems. The main idea is to find relations between properties of 

the genotype and the emergent phenotypes targeting specific characteristics, i.e. num-

ber of states in the transient length, organism growth speed, etc., in order to get an 

extended and detailed explanation of the underlying properties of developmental sys-

tems. 

Several genome parameters have been previously proposed in order to measure 

genotype properties. Langton [21] studied a parameter λ as a measure of the activity 

level (the outcome) of the system. A similar parameter, neighborhood dependent, is 

Absolute Activity presented by De Oliveira [4]. Li [5] introduced Mean Field Parame-

ters to monitor if the majority of the regulatory actions follow the “mean” configura-

tion. De Oliveira [4] presented a very similar parameter called Neighborhood Domi-

nance. Binder [1, 2] introduced the Sensitivity parameter which measures the number 

of changes in the output of the transition table based on a change in the neighborhood, 

one cell at a time, over all the possible neighborhoods of the rule being considered. 

This has also being studied by De Oliveira [3, 4] under the name of Context Depend-

ence. However, all the proposed parameters are focused on helping to solve a specific 

computational task, e.g. synchronization task [25], rather than to exploit and under-

stand developmental properties or to guide evolution. 

3 Developmental Model 

The developmental model used in this work is a minimalistic cellular developmental 

model based on cellular automata, similar to cellular models used in [18, 24, 27]. The 

model is based on a two dimensional cellular automata with cyclic boundary condi-

tions, as shown in Figure 1(a). The number of cell types is set to three instead of two 

in order to keep the property of multicellularity. In Figure 1(c) the three cell types are 

shown: two cells (type 1 and 2) plus the empty or dead cell (type 0). A single cell, 

placed in the centre of the development grid, develops according to a developmental 

table based on Von Neumann’s neighborhood (five neighbors), as represented in Fig-

ure 1(b). All the possible regulatory input combinations are explicitly represented in a 

development table, i.e. 243 (3
5
) neighborhood configurations. To ensure that cells will 

not materialize where there are no other cells around, a restriction has been set: if all 

the neighbors of an empty cell are empty, the cell will be empty also in the following 

development step. This is shown in Figure 1(d), where the first entry represents the 

growth restriction. A more detailed description of the development model is given in 

[6]. Figure 1(e) shows an example of a developing organism. In Development Step 0 

there is only a single cell of type 1 (zygote). In DS 1 the cell has divided and differen-

tiated. The following DSs from 2 to 4 show changes in phenotypic structure until the 

last DS 2 000 000 is reached. 

Having all the 3
5
 input combinations fully specified together with their respective 

cellular actions, makes it possible to use the genome information to calculate parame-

ters (based only on the developmental table) that may describe different behaviors of 

the developing organisms or some specific characteristics of the developmental path, 

i.e. trajectory length (number of development steps until a state is reached for the 



second time and an attractor is found), attractor length, growth speed (number of cells 

that become alive during the transient phase), change rate (number of cells that differ-

entiate from development step to development step along the attractor).  

Other more detailed non-minimalistic models [24, 27] make it very hard to specify 

all the possible regulatory combinations [6]. 
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Fig. 1. Minimalistic cellular developmental model. (a): 2D grid world where the organism 

develops; (b): cellular neighborhood; (c): cell types; (d): genetic information, developmental 

table with regulatory input and cellular actions; (e): example of developing organism. 

4 Genome Parameters 

Parameters obtained from the genome information can be used to estimate the dynam-

ic behavior of the system. Given a well-defined computational problem, e.g. synchro-

nization task [25], it is possible to search for possible solutions/genotypes that are 

able to develop the target phenotype. A search algorithm, e.g. a genetic algorithm, 

may benefit from the usage of a parameter that guides the search in favorable areas of 

the search space. However, for a developmental approach, it may be better to have 

simple independent parameters, where each parameter indicate specific developmen-

tal behavior, e.g. long transient length or short attractor, and eventually combine sev-

eral parameters together to “compose” the desired target behavior. The set of all the 

developmental characteristics may be seen as a multidimensional space, where every 

independent parameter represents a degree of freedom and allows moving on a specif-

ic axis. Figure 2 shows this idealized version of the genotype hyperspace. The differ-



ent parameters help to reach and keep sought phenotypic properties. Attractor length 

indicates stable or changing phenotype structure, growth speed differentiates fast and 

slow growing organisms and change rate indicates the ability for state change. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Multidimensional representation of the genotype space, where each parameter may 

represent a different dimension.  

Having defined the developmental genome in a transition table, as shown in Figure 

1(d), makes it possible to simulate the development process of artificial organisms 

with cellular automata and relate their emergent behavior with genome parameters. 

The explored parameters are described in the following sections.  

4.1 Lambda Parameter 

Langton [21] tried to find a relation between CA behavior and a parameter λ. He ob-

served that the basic functions required for computation (transmission, storage and 

modification of information) are more likely to be achieved in the vicinity of phase 

transitions between ordered and disordered dynamics (edge of chaos). He hypothe-

sized that it is easier to find rules capable of complex computation in a region where 

the value of λ is critical. Since the developmental model is composed by 3
5
 regulatory 

combinations, all the possible regulatory inputs and relative outputs (growth, differen-

tiation or no action) are fully specified in the developmental table. In order to calcu-

late λ, it is necessary to define a quiescent state, the void cell (type 0) in our case. 

Lambda is defined as follows: 

  
    

     (1) 

λ can be calculated according to Equation 1, where n represents the number of 

transitions to the quiescent state, K is the number of cells types (three in our case) and 

N is the neighborhood size (five in the Von Neumann neighborhood). In this way, the 

value of λ is based only on local properties of the neighborhood and in particular the 

cellular actions that are present in every cell. A restriction has been set in the transi-

tion table to prevent growth of cells surrounded by empty cells: if all the neighbors of 

an empty cell are empty, the cell will be empty in the next development step. 



4.2 Majority Parameter 

Li [5] studied Mean Field Parameters on one-dimensional cellular automata with two 

states, starting from random initial configurations. The goal was to capture if the cel-

lular development was following the “mean value” of the other cells in the neighbor-

hood. A generalization of those parameters could be what we call Majority parameter, 

i.e. how many neighborhood configurations in the rule table follow the majority state 

to determine the next state. This approach could be related to a structured develop-

ment of multi-cellular organisms. Moreover, it can be calculated regardless of the 

number of cell types and neighborhood configurations. Majority parameter is a sum, 

over all the neighborhood configurations in the developmental table, of the number of 

cellular actions that are affected by the most present cell in the neighborhood. This is 

shown in Equation 2. 

                                  (2) 

where m is number of cells in the neighborhood and V(m+1) is the value of the cell 

being considered, at the next time step. The function maj() retrieves the most present 

cell type (or the set of most present cell types) in the neighborhood. M is the count, 

over all possible neighborhoods, of the number of cellular actions in the developmen-

tal table, following the most present state among the neighbors. The parameter is 

normalized between 0 and 1, where the value 0 means that none of the cellular actions 

in the developmental table follow the most present state in the neighborhood. 1 repre-

sents a situation where the overall behavior is following the majority of the cells pre-

sent in the neighborhood. Majority parameter is based on both neighborhood configu-

ration and the relative cellular action, analyzed one by one, and measures the amount 

of change in respect to the neighborhood. 

4.3 Sensitivity Parameter 

Sensitivity parameter, introduced by Binder [1, 2] as μ, is a measure of the neighbor-

hood and the output state as an overall (not entry by entry as for λ and M). μ captures 

the “dependency” of a single entry in the developmental table together with all the 

other entries with a similar neighborhood configuration. In details, it measures the 

number of changes in the output of the transition table based on a change in the 

neighborhood, one cell at a time, over all the possible neighborhoods of the rule being 

considered. The Sensitivity parameter is easy to calculate. However, it is much harder 

to generate a specific developmental table with a specific parameter value (in the 

following chapter we describe a Genetic Algorithm that is used for this purpose). μ is 

described only for one-dimensional cellular automata with two states. We generalized 

the formula to consider CAs that are representing the development of multi-cellular 

organisms with three cell types with five neighbors. This is described in Equation 3. 
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In Equation 3, m is the number of cells in the neighborhood. n is the number of 



possible neighborhood configurations (V1V2…Vm = 3
5
 = 243). K is the number of 

cell types. The denominator is multiplied by K-1 because, if a specific cell state is 

being considered, there are K-1 other possible cell values to be checked. Equation 4 

shows the core calculation, where every neighborhood configuration is compared with 

all the other neighborhood configurations with a single different value. 

  

   
 =                                  

           
  (4) 

The value of the derivate    /     is 1 if                           . 

This happens when the value of the cell at the next time step is sensitive to the value 

of the neighbor in position q. The value of the derivate is 0 otherwise. 

5 Experiments 

In the experiments herein, the main idea is to generate genomes with a given property 

(a specific parameter value). In order to compare results for different parameters, the 

parameter intervals are normalized between 0 and 1. 1000 developmental tables are 

generated for each parameter value (from 0 to 1) with granularity 0.01. Each generat-

ed genotype is developed until a state is repeated twice and an attractor is found. The 

size of the CA grid is set to 4x4 cells.  

For every parameter value, several measurements are performed and compared, i.e. 

attractor length, trajectory length, growth rate and change rate. Figure 3 summarizes 

the described experimental setup. Measurements are described in the last section of 

this chapter.  
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Fig. 3. Experimental setup: first genomes are generated according to a parameter, then artificial 

organisms are developed and finally phenotypic behaviors are measured. 

5.1 Genomes generation with λ parameter 

In the first experiment, genomes are generated with predefined values of λ. Test ge-

nomes were generated in a similar method to Langton’s [21] random table method. 

For every entry in the development table, with probability (1- λ) the cell type at the 

next developmental step is quiescent (type 0). With probability (λ), the cell type at the 

next developmental step is generated by a uniform random distribution among the 

other cell types (type 1 or 2). 



5.2 Genomes generation with M parameter 

In the second experiment, the λ of the first experiment is substituted with M parame-

ter generated genome. For this purpose, for each table entry, the procedure is:  

 If there are more than 3 occurrences of a cell type, with probability M the cell type 

at the next developmental step follows the most present cell type in the neighbor-

hood. With probability 1-M the cell type at the next developmental step is generat-

ed by a uniform random distribution among the other two cell types (the minority 

in the neighborhood); 

 If there are 2 cell types with occurrence 2, with probability M/2 one of those 2 cell 

types is chosen. Otherwise, with probability 1–M the cell type at the next devel-

opmental step has the same type as the less present cell type in the neighborhood. 

5.3 Genomes generation with μ parameter 

In the third set of experiments, genomes have to be generated with specific μ proper-

ties. Even if μ is easily computable for a specific development table, it is much harder 

to generate a development table with a target μ value. In order to generate 1000 sam-

ples for each value, a Genetic Algorithm has been implemented. The GA's fitness 

function is set to generate development table with target μ values in the sought range. 

It is important to highlight that the goal of this experiment is not to achieve good GA 

performances, whether to be able to generate the desired target genotypes. 

5.4 Measurements 

Having identified three parameters as an evaluation of the genetic information, meas-

urements of the developmental organism have to be defined in order to find possible 

correlations between genotypes and emerging phenotypes. Such phenotypic measures 

should provide information regarding the development process as a whole and the 

phenotypic changes that occur during each development stage. Thus, it may be possi-

ble to differentiate distinct dynamic behavior of the developing organisms.  

For a given organism, a trajectory starts from an initial cell (zygote) and follows 

the developmental path. Each state includes information on morphology, size, behav-

ior etc. The trajectory describing the developmental path can end up in a final stable 

organism; a point attractor or as a self-reorganising organism; a cyclic attractor. 

It may be argued that a stable final structure is important [24], i.e. development reach-

es a structure (or state) that is stable by self-regulation. On the other hand, it may be 

argued that a dynamic phenotypic structure with self-reorganizing possibilities may 

be an important part for computation and/or adaptation for developmental machines 

[27].  

As such, the developmental trajectory with its transient part and attractor can rep-

resent a possible quantifiable measurement of the development of an artificial organ-

ism. Applying trajectory information to quantify developmental properties gives  

information  regarding  stability  of  the  organism,  does  development  create a stable  



 

(a) Average trajectory and attractor length              (b) Average growth and change rate 

Fig. 4. Measurements in correlation to λ. Average over 1000 tests for each λ value. 

 

(a) Average trajectory and attractor length              (b) Average growth and change rate 

Fig. 5. Measurements in correlation to M. Average over 1000 tests for each M value. 

 

(a) Average trajectory and attractor length              (b) Average growth and change rate 

Fig. 6. Measurements in correlation to μ. Average over 1000 tests for each μ value.  

organism or does the organism end with a structure that change form in a cyclic man-

ner. Both alternatives provide interesting knowledge that would be favorable if it can 

be predicted already at the design point of developmental models, genome representa-

tion and/or genetic operators. 

Another possibility is to investigate internal qualities of the developmental pro-

cesses, i.e. growth, cell death and differentiation, and thereby define measures of dif-

ferent developmental phases. Two phases of interest are considered. First, a growth 

phase where the organism expand in size toward an ”adult” form and second, change 



in the adult organism. Growth increases the number of cells ”alive” and differentia-

tion changes the cell type. Growth is here defined (not exactly biological correct) as 

the transient phase of a trajectory and the chosen growth measurement is the size of 

the organism at the end of the transient phase, i.e. all cells of type non-void. Change 

rate is defined as the average number of cells that change cell type from development 

step to development step along the attractor. It can then be seen as a measurement of 

the adult life of the organism. 

In order to have a complete overview of the different emergent behaviors, we use 

four measurements: trajectory and attractor length that may indicate information 

about structural and adaptive properties of the organism, growth and change rate that 

may give information on the activity of the developmental processes. The measure-

ments used herein are close to complexity measures of phenotypic properties [17]. 

Kolmogovor inspired complexity measurements [22] are also related. 

5.5 Results 

In the experiments herein, the array size was set to 4x4. The size of the arrays was 

chosen as to be able to carry out experiments in reasonable computational time. Or-

ganisms of 4x4 cells may be considered rather small, however, the theoretical maxi-

mum attractor length is 3
16

.  As such, even at the chosen array size, the variation in 

trajectory and attractor length can have a huge deviation.  

The average trajectory length and average attractor length were recorded and plot-

ted as a function of the parameters, λ in Figure 4(a), M in Figure 5(a) and μ in Figure 

6(a). The same was done for average growth and average change rate and results are 

presented in Figure 4(b), 5(b) and 6(b).  

6 Conclusion  

The presented experiments show that each of the used parameters have a specific 

ability to measure properties of the genome composition as an indication of how the 

resulting organism will develop. The plot in Figure 4(a), show common results with 

Langton’s work on λ, i.e. sudden increase in the length of trajectories, attractors and 

transient phase of a developing organism. However, Langton’s work was focused on 

potential computational properties of the system related to phase transitions. This 

result is encouraging as it indicates that the observed correlation between λ and the 

state space properties is not a special case related to the development model or a given 

size constraint. This is further emphasized by Langton’s work [21], where neighbor-

hood configuration and cell types were expanded. Besides, the shown parameter cor-

relates with [6] where different grid sizes were tested on the developmental model. 

The comparison of the plots in Figure 4(a), 5(a) and 6(a) show that the length of the 

trajectories depend strongly on the parameters value. As such, the result show that a 

calculation based on the genome composition can reflect a predictable developmental 

behavior. Such knowledge of probable path properties, e.g. length, may help evolu-

tion if there exist knowledge of what developmental path length is likely to be needed 

to reach a phenotype with certain structural properties. λ and M have the same power 



to exploit trajectory and attractor length, whether μ is able to exploit longer paths, on 

average. An interpretation of such result is that μ can be used to guide towards part of 

the search space where genomes with long attractors are more likely to be found.  

The results in Figure 4(b), 5(b) and 6(b), further emphases a relation between the 

measurements of genomic composition and developmental behavior. In Figure 4(b) 

the growth rate shows that for low values of λ the transient phase of the developmen-

tal path is rather short. Genomes with this property have a rather high probability of 

short developmental time with a point or short attractor. This knowledge is useful if a 

requirement is to develop stable organisms. Figure 5(b) shows that parameter M has 

the same ability as λ to represent growth rate of developing organisms but could be 

better suited to discover organism with higher number of structure and shape changes, 

especially for low M values. Figure 6(b) show that the usage of μ as measurement of 

genomic composition could accentuate the possibility to find organisms that develop 

at a higher rate with low changes in their attractor, thus being quite stable with few 

changes in form. Again, such knowledge could be helpful at the system design stage 

if information on the desired target phenotype is known. 

Comparing the results in Figure 4, 5 and 6, it is possible to observe that if two or 

more parameters would be used together, it could be possible to compose develop-

mental behaviors that are not achievable with a single parameter, e.g. low λ value to 

achieve short attractor lengths and low μ value to obtain higher growth rate. In terms 

of evolvability, it could be possible to add several parameters in the fitness function. 

However, evolving behaviors instead of looking at the effect would require a different 

experimental approach than the one used herein.  

Moreover, when it comes to adaptivity and evolution, the results herein show that 

genomes with a given parameter value will most likely mutate to genomes with simi-

lar developmental behavior as long as the mutation result in an offspring with similar 

parameter value. Parameters could then be used to guide evolution towards favorable 

areas of the solution space and then remain in that area without jumping in a complete 

different region of the hyperspace where desired developmental behaviors are less 

likely to be found. 
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