

UCNC 2012 - University of Orléans (France)

"Genome Parameters as Information to Forecast Emergent Developmental Behavior"

Stefano Nichele and Gunnar Tufte 2012, September 4

Goal

 Measure genome properties in EvoDevo systems to predict emergent phenotypic behaviors of artificial organisms

EvoDevo:

- Artificial Development (genotype phenotype mapping)
- Artificial Evolution (population, generations, genetic operators)

EvoDevo systems - CA

- A CA can be considered as a developmental system, in which an organism can develop (e.g. grow) from a zygote to a multicellular organism (phenotype) according to specific local rules, represented by a genome (genotype).
- The genome specifications and the gene regulatory information control the cells' growth and differentiation.
- The behavior of the CA is represented by the emergent phenotype, which is subject to shape and size modification, along the developmental process.

CA model

Type 1

Type 2

- minimalistic developmental system
- 3 cell types (type 0: quiescent, type 1 and type 2 for multicellularity)
- all possible 3⁵ = 243 regulatory input combinations are represented in a development table

DS 1

NTNU – Trondheim Norwegian University of Science and Technology

L	R	U	D	C	C (t+1)
0	0	0	0	0	0
0	0	0	0	1	{0,1,2}
0	0	0	1	0	{0,1,2}
0	0	0	1	1	{0,1,2}
0	0	1	0	0	{0,1,2}
		:			:
1	1	1	1	1	{0,1,2}
0	0	0	0	2	{0,1,2}
0	0	0	2	0	{0,1,2}
0	0	0	2	1	{0,1,2}
0	0	0	2	2	{0,1,2}
		:			:
2	2	2	2	2	{0,1,2}

Genome Parameters

Genome information to estimate the dynamic behavior of the system

 Each parameter may be better suited to describe specific developmental behaviors, e.g. long transient length, short attractor

Point Attractor

Cyclic Attractor

Lambda Parameter

$$\lambda = \frac{K^N - n}{K^N}$$

- n = number of transitions to the quiescent state (state 0)
- K = number of cells types = 3 (in our model)
- N = neighborhood size = 5 (Von Neumann neighborhood)

Majority Parameter

 how many neighborhood configurations in the rule table follow the majority state to determine the next state

$$M = \sum_{(V \perp V 2 \dots V m)} [V(m+1) = maj(V \perp V 2 \dots V m)]$$

- m = number of cells in the neighborhood
- V(m+1) = value of the cell being considered, at the next time step
- maj() = function that retrieves the most present cell type (or the set of most present cell types) in the neighborhood

Sensitivity Parameter

 measures the number of changes in the output of the transition table based on a change in the neighborhood, one cell at a time, over all the possible neighborhoods of the rule being considered

- m = number of cells in the neighborhood
- n = possible neighborhood configurations (V1V2...Vm = 3⁵ = 243)
- K = number of cell types

Genome Parameters – Recap

Evaluation of the genetic information

- λ (Lambda): purely regulatory output
- M (Majority): regulatory input and relative output, each entry considered independently
- µ (Sensitivity): overall parameter calculated out of genetic dependency properties

State space: $3by3 = 3^9 = 19.683$ $4by4 = 3^{16} = 43.046.721$ $5by5 = 3^{25} = 847.288.609.443$

Measurements of the Phenotypic Behavior

- Measure characteristics of the developmental organism:
 - information regarding the development process as a whole
 - Information on phenotypic changes that occur during each development stage

Measurements of the Phenotypic Behavior - 2

- trajectory and attractor length: may indicate information about structural and adaptive properties of the organism
 - does development create a stable organism (point attractor) or does the organism end with a self-reorganizing structure that changes form in a cyclic manner (cyclic attractor)?
- growth and change rate: may give information on the activity (internal properties) of the developmental processes
 - growth phase: the organism expand in size toward an "adult" form
 - change phase: changes in the adult organism (measurement of the adult life of the organism)

Results - λ

Measurements in correlation to λ , average over 1000 tests for each λ value

1400 18 -Average of Growth Rate -Average of Trajectory Length 16 1200 Average of Change Rate -Average of Attractor Length 14 ······ StdDev of Growth Rate 1000 Development Steps 12 ······ StdDev of Change Rate 800 10 # cells 8 600 6 400 4 200 2 0 0,96 1,00 0,48 0,52 0,56 0,68 0,84 36 00'0 0,04 0,08 0,12 0,16 20 4 0,44 0,60 0,64 76 0,80 0,88 0,92 0,08 48 56 0,60 89 0,96 8 З 0,64 8 ò ò ò ò λ (Lambda) λ (Lambda)

Average trajectory and attractor length

Average growth and change rate

Results - M

Measurements in correlation to M, average over 1000 tests for each M value

Average trajectory and attractor length

Average growth and change rate

Results - µ

Measurements in correlation to μ , average over 1000 tests for each μ value

Average trajectory and attractor length

Average growth and change rate

Comparison

www.ntnu.edu

Conclusion

- Each genome parameter has a specific ability to measure properties of the resulting organism
- Knowledge of probable developing properties may be helpful at the design stage of an EvoDevo system, if information on the desired target phenotype is known
- Possible to use more parameters together to compose desired developmental behaviors, not achevable with a single parameter
- Adaptivity and evolution: genomes with a given parameter value will most likely mutate to genomes with similar developmental behavior, as long as the mutation results in an offspring with similar parameter value
- Guide evolution towards favorable areas of the solution space where desired developmental behaviors are more likely to be found

Future Work

- Other phenotypic measures of complexity, e.g. structural complexity
- Use parameters to drive evolution in desired areas of the search space
- Use parameters to supervise genetic operators

•

www.ntnu.edu

Genomes generation with λ parameter

Genomes generated with predefined values of λ Similar method to Langton's random table method

For every entry in the development table:

- with probability (1- λ) the cell type at the next developmental step is quiescent (type 0)
- with probability (λ), the cell type at the next developmental step is generated by a uniform random distribution among the other cell types (type 1 or 2)

Genomes generation with *M* parameter

- if there are more than 3 occurrences of a cell type:
 - with probability M the cell type at the next developmental step follows the most present cell type in the neighborhood
 - with probability 1-M the cell type at the next developmental step is generated by a uniform random distribution among the other two cell types (the minority in the neighborhood)
- If there are 2 cell types with occurrence 2
 - with probability M/2 one of those 2 cell types is chosen
 - with probability 1–M the cell type at the next developmental step has the same type as the less present cell type in the neighborhood

Genomes generation with μ parameter

µ is easily computable for a specific development table

Much harder to generate a development table with a target µ value, because of entry dependencies

A Genetic Algorithm is used

