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Criticality is a behavioral state in dynamical systems
that is known to present the highest computation capabil-
ities, i.e., information transmission, storage, and process-
ing (Langton, 1990). A system capable of this behavior may
contain one or more controlling parameters that change the
system’s phases, such as temperature and pressure. There-
fore, such parameters can be tuned to achieve the optimal
behavior for computation. This behavior is observed when
the system is near a phase transition. Another type of crit-
ical behavior is achieved when the same activity patterns
spread in space and time across different scales, similar to
a fractal in the space dimension. This is identified by a
power-law distribution in the system’s activity. Most of the
critical systems exhibit these two types of behavior. How-
ever, a control parameter is not commonly observed and the
system stays in criticality independently of the initialization
or tuning, such that the critical state is an attractor to the
system. A system with such characteristics displays what
is called self-organized criticality (SOC) (Bak et al., 1987,
1988; Pontes-Filho et al., 2022). Natural events of this criti-
cality were detected in some distributed dynamical systems,
notably in neuronal avalanches in the cortex. Moreover,
SOC is hypothesized to support intelligence in the human
brain (Fontenele et al., 2019; Heiney et al., 2021). This is
often referred to as the critical brain hypothesis.

Our goal is to optimize a simple and deterministic dynam-
ical system toward criticality, such that it may be applied in
a paradigm in the artificial intelligence (AI) field, known as
reservoir computing (RC) (Schrauwen et al., 2007). This
paradigm utilizes a dynamical system as a reservoir to per-
form computation; then, a linear machine learning model is
trained to interpret the states of the reservoir perturbed by the
input data. Our choice of optimization method is evolution-

Figure 1: Architecture of the unidimensional neural cellular
automata. Convolutional layer is 1D.

Figure 2: Sample of the selected critical NCA with 200 cells
(horizontal axis) randomly initialized and ran through 200
time-steps (vertical axis from top to bottom). White cells
are state 0, and black cells are state 1.

ary computation, and the dynamical system to be evolved is
a deterministic one-dimensional neural cellular automaton
with periodic boundaries. Recently critical stochastic 1D
cellular automaton (CA) was evolved by Ref. (Pontes-Filho
et al., 2020). However, this CA was not effective in RC be-
cause of its stochasticity. Therefore, the present work aims
to evolve a deterministic CA. A CA system consists of dis-
crete computing units or cells regularly distributed in a grid,
commonly with one or two dimensions. Those cells often
have binary states that change in discrete time following a
transition rule. Since the selected system is a neural cellular
automaton (NCA), the transition rule is an artificial neural
network (Mordvintsev et al., 2020; Nichele et al., 2017).

The proposed 1D NCA contains 1,000 binary cells that
have four extra binary states serving as communication
channels. Its architecture consists of one 1D convolution
layer with 30 kernels of size 3 (neighborhood) and rectified
linear unit (ReLU) as activation function, a dense layer with
30 neurons with ReLU, ending with a dense layer with 5
binary neurons (step activation function) to define the cen-
ter cell state and its four extra states. The architecture uses
n = 5 and is illustrated in Fig. 1. The weights and biases
of this network were evolved with covariance matrix adapta-
tion evolution strategy (CMA-ES) (Hansen and Ostermeier,
1996). The fitness function used to guide the evolution of



(a) Avalanche size of state 0 (b) Avalanche duration of state 0 (c) Avalanche area of state 0

(d) Avalanche size of state 1 (e) Avalanche duration of state 1 (f) Avalanche area of state 1

Figure 3: Example of the avalanche distributions of the selected NCA. The estimated power-law slope α̂ and goodness-of-fit
p-value are included in the legends.

the NCA is from Refs. (Pontes-Filho et al., 2020, 2022).
It takes the distributions of the six avalanche types, which
are size, duration, and area of avalanches for states 0 and 1
(see Ref. (Pontes-Filho et al., 2022) for the avalanche defi-
nitions) and calculates the similarities with their power-law
distributions estimated with a linear fitting method called
least squares regression applied in the 10 leftmost points of
the distribution. The similarity measurements are the co-
efficient of determination of complete linear fitting and the
Kolmogorov-Smirnov statistic. Additional fitness scores are
the percentage of non-zero bins in the distribution and the
percentage of unique states during the simulation. More-
over, small adjustments in the fitness function were made
when getting the maximum or minimum feature values of
the six avalanche distributions. Now the maximum or min-
imum values are selected from the average of the three
avalanche measurements for the two cell states. For calcu-
lating the fitness score, a simulation randomly initialized and
executed for 1,000 time-steps is performed.

The evolution is executed for 200 generations with 96 in-
dividuals. Several evolutionary runs were performed and
one high-performing evolved NCA was selected as a result
to be shown in this work, which is depicted in Fig. 2. The
selection criterion for the optimizations is the goodness-of-

fit p-value based on the Kolmogorov-Smirnov statistic of the
six avalanches (Clauset et al., 2009). The avalanche distri-
butions of the selected NCA are presented in Fig. 3. All the
distributions have p-value equal to 1 which confirms they are
all power-law distributions and the NCA is in the criticality
regime.

In conclusion, this method is the first one (to the best
of our knowledge) that presents an evolutionary algorithm
guiding an NCA toward criticality. While our method was
successful, it required several evolutionary runs to achieve
a satisfactory level for our criteria of goodness-of-fit. Our
plan for ongoing work is to apply the evolved critical NCA
in reservoir computing benchmarks. The reason for that is
that AI systems are rather narrow and rigid, and an alterna-
tive to improve adaptation is through distributed dynamical
systems optimized to proper computation regimes, such as
the one in this work and applied in an RC framework.
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