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Abstract 

The year of 2023 marks the 25th anniversary of the discovery 
of evoloops, which proved that Darwinian evolution of self-
replicators by variation and natural selection was possible 
within deterministic cellular automata. This line of research has 
since undergone several important developments. Although it 
experienced a relative dormancy of activities for about a 
decade, the recent rise of interest in open-ended evolution and 
the success of continuous cellular automata models have 
brought researchers’ attention back to how to make spatio-
temporal patterns self-replicate and evolve within spatially 
distributed computational media. This presentation provides a 
brief review of the relevant literature on this topic over the past 
25 years and highlights promising future research directions. 

 
June 1st, 2023 marks the 25th anniversary of the discovery of 
evoloops (Sayama 1998, 1999a, 1999b), the first cellular 
automata-based artificial life that exhibits true Darwinian 
evolution of self-replicators by spontaneous variation and 
natural selection. Creating such a demonstrative evolutionary 
process within artificial media like cellular automata was one 
of the original goals set by founding pioneers of artificial life 
(von Neumann 1966; Langton 1984, 1986). However, this line 
of research remained rather unpopular and unexplored ever 
since, likely because of the lack of rigorous theories, 
generalizability of models, and immediate applications to 
practical problem solving. Nonetheless, several important 
developments were made since the proposal of evoloops, and 
more recently, artificial life researchers began to pay attention 
again to how to make patterns self-replicate and evolve within 
spatially distributed computational media, potentially leading 
to open-ended evolution.  
 The original evoloop model (Sayama 1998, 1999a, 1999b) 
was a 9-state 2D cellular automata model with von Neumann 
neighborhoods, derived from Langton’s self-reproducing 
loops (Langton 1984). Its state-transition function was revised 
so that it would operate more robustly under a greater variety 
of local situations and that any undefined situation would 
generate a “dissolving” state that would propagate through 
contiguous active states and erase them from the space 
(structural dissolution). Direct interactions (collisions) of 
evoloops caused irregular situations during their replication 
process, naturally inducing variations of their genetic codes 
and thereby achieving spontaneous evolution of self-
replicators toward the fittest form (smallest ones in most 

cases; Figure 1) (Sayama 1998, 1999a). This system was also 
known to demonstrate substantial fault tolerance and, with 
slightly revised state transition function, abiogenesis from an 
initial configuration with no ancestor replicators (Sayama 
1999b). 
  

 
Figure 1: Spontaneous evolution of evoloops (figure from 
(Sayama 1999a)). 
 
 The proposal of evoloops triggered several subsequent 
studies that implemented important developments. Nehaniv 
(2002) expanded the model to asynchronously updated 
cellular automata and showed that evolution can occur even 
without synchronous updating. Sayama (2004) introduced 
self-protection behaviors of individuals and showed that it 
would help promote the diversity of species. Salzberg and 
Sayama (2004a) conducted detailed genetic sequencing of all 
the individual self-replicators that appeared in simulations and 
found that their genotypic/phenotypic diversities were much 
greater than originally thought and they continued to evolve 
for a long period of time after the loops’ size reached the 
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smallest level. Salzberg et al. (2004) also studied the 
evolutionary dynamics of evoloops in dynamic, hostile 
environments. Moreover, Oros and Nehaniv (2007) proposed 
a revised model in which loops engaged in sexual 
reproduction by exchanging genetic information when 
colliding with each other, and they also showed that the 
capability of sexual reproduction can be evolutionarily 
maintained (Oros & Nehaniv, 2009). A related approach 
studied at about the same time was to achieve evolution of 
self-replicators via the shape-encoding mechanism. It was 
originally proposed by Morita and Imai (1996) for self-
replication of various shapes in reversible cellular automata, 
but later adopted to promote spontaneous evolution of patterns 
through their spatial interactions (Sayama 2000; Suzuki & 
Ikegami 2006). A concise review of research on self-
replication and evolution in cellular automata up to mid-2000s 
can be found in (Salzberg & Sayama 2004b). 
 Since then, this line of research experienced a relative 
dormancy of activities for about a decade, probably because 
the topics of interest in the artificial life community became 
diversified and shifted more toward evolutionary robotics, 
neuroevolution, swarm intelligence, agent interactions, and 
others. During this “lost” decade, there was not much progress 
made in self-replicating and evolving cellular automata 
research (but some exceptions exist, e.g., Yinusa & Nehaniv 
(2011) that studied the inheritability of mutations in von 
Neumann’s self-reproducing automata, and Huang et al. 
(2013) that proposed self-reproducing loops that adapt their 
shapes to local spatial constraints). 
 Interestingly, for the last several years, there has been a 
resurgence of researchers’ interest in spontaneous evolution of 
self-replicators in cellular automata. This is partly because of 
the Open-Ended Evolution (OEE) movement (Taylor et al. 
2016) that re-ignited the study of evolutionary dynamics 
within a dynamical system. For example, Adams et al. (2017) 
systematically investigated how to achieve OEE within 
elementary cellular automata and showed that dynamic 
changes in environmental conditions (= transition rules) were 
most effective for achieving OEE.  

Most recently, the success of continuous cellular automata 
models, such as Lenia (Chan 2019, 2020) and neural cellular 
automata (Mordvintsev et al. 2020), has attracted many 
researchers to explore how to create spontaneous evolutionary 
processes of diverse self-replicating patterns within a 
continuous cellular automata space. This is a very recent 
development that has been taking place only within the last 
year or two. For example, Sinapayen (2023) trained neural 
cellular automata so that they replicate given organism 
patterns, and demonstrated that the replicated patterns would 
deviate from the ancestor pattern over time, suggesting 
genetic/phenotypic drift through multiple generations. Also, 
Plantec et al. (2022) and Chan (2023) studied Lenia-based 
evolutionary systems in which model parameters were 
associated with each location and diffused over space (with 
mutations) so that multiple species and their interactions could 
be simulated simultaneously within a single simulation run 
(Figure 2). This is similar to the “recipe” propagation 
approach used in evolutionary Swarm Chemistry models 
(Sayama 2011) with great potential to generate a broad range 
of self-replicating spatio-temporal patterns automatically and 
efficiently. 

 
Figure 2: Various patterns evolved within Evolutionary Lenia 
(images courtesy of Bert Chan; from (Chan 2023)). 
 
 These recent developments that utilize continuous cellular 
automata are very promising and expected to produce further 
advances in self-replication and evolution research. 
Meanwhile, many key questions still need to be addressed, 
and here we discuss only a few.  

First, nearly all the above evolutionary systems built within 
spatially distributed media exhibited the eventual dominance 
by one or a few most successful species in the long run, and it 
is still unclear what kind of generalizable principles or 
mechanisms are available to prevent the evolving ecosystem 
of self-replicators from falling into such pseudo-equilibrium 
states. It has been suggested that dynamic environments 
(Salzberg et al., 2004; Sayama 2011; Adams et al., 2017) are 
the key to addressing this issue, although they may not work 
for indefinitely long terms (Sayama 2018). 

Second, the recent approach to assign model parameters to 
local regions/agents deliberately avoids explicit representation 
of such genetic information in the space, in contrast to real 
biological systems and earlier self-replication models (von 
Neumann 1966; Langton 1984; Sayama 1998, 1999a, 1999b) 
where genetic instructions were explicitly represented in 
space. It is not well understood how these two approaches 
differ regarding the open-endedness and creativity of their 
evolution.  

Third, all the models reviewed so far relied on either 
logically designed mechanisms written in discrete state-
transition rules or dynamically generated quasi-stable patterns 
in continuous space, but neither would capture the autopoietic 
nature of real biological systems. There is another major body 
of literature on computational autopoietic models (McMullin, 
2004; Nehaniv, 2005; Ikegami & Suzuki, 2008; Suzuki & 
Ikegami, 2009; Sirmai, 2011, 2013), and some of them even 
demonstrated self-reproduction of autopoietic structures 
(Sirmai, 2013). However, it remains unclear how one could 
integrate autopoietic dynamics into existing cellular automata 
models of evolving self-replicating patterns. 

Finally, the relationship between the evolutionary dynamics 
of those self-replicators and the “intelligence” therein is worth 
further quantitative investigation. Intelligence is often 
associated with computational universality and critical 
behavior, and therefore, it may be characterized by the 
incompressibility/irreducibility of spatio-temporal dynamics. 
It would be quite interesting to quantify how much 
compressibility/reducibility the spatio-temporal dynamics of 
evolving self-replicators would have, and how it would 
change over time in the course of their evolution. If one could 
create evolutionary cellular automata that become 
increasingly harder to simulate over time, that would indicate 
the increasing complexity (= computational capability, 
“intelligence”) of evolving entities within spatially distributed 
media. This would be a direct, concrete, measurable 
demonstration of the very original motivating vision posed by 
von Neumann (1966). 
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