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Even under the influence of entirely deterministic natu-
ral laws, an agent with only finite information about its sur-
roundings will experience some degree of randomness. This
is exemplified in physics by observations of Brownian mo-
tion Einstein|(1905), in which an observed particle in contact
with a large bath of unobserved particles undergoes seem-
ingly random, yet entirely determined, motion. Therefore it
is reasonable to suggest that anywhere life that emerges, it is
doing so despite a stochastic environment, as it has on Earth.

At the same time, living may be phrased as computation.
Receiving a stimulus from the environment and responding
in the “correct” way (that maximizes one’s ability to con-
tinue to stay alive) is equivalent to computing the output of
a function given an input |Parr et al.| (2022). Given this and
the ubiquity of noise, it is clear that there is an intimate con-
nection between life and fault-tolerant computing, as first
recognized by von Neumann. Inspired by the incredible de-
gree of robust computing he observed in the natural world,
von Neumann developed schemes for robustly performing
computations using only noisy components [von Neumann
(1956).

Since the time of von Neumann, we have made substan-
tial experimental progress toward understanding the mech-
anisms biological systems use to compute fault tolerantly.
Namely, we have discovered many examples of formal
error-correcting codes |Shannon| (1948) in biological sys-
tems. Crick famously discovered that a simple form of a
triple redundancy code is used to reliably synthesize pro-
teins from mRNA |Crick et al. (1957). 21% century geneti-
cists have since discovered more explicit examples of error
correction: it has been found that DNA sequences, and even
entire genomes, can be identified as codewords of the fa-
mous Hamming code Hamming| (1950); [Faria et al.| (2012)).
Error-correcting codes are also a hot topic in neuroscience.
In particular, several examples of low dimensional mani-
folds have been discovered in the activity of particular neu-
ral circuits |(Chaudhuri et al.| (2019); |Gardner et al.| (2022),
which can be identified as topological codes. In particular,
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we have discovered that grid cells, which are part of the cir-
cuitry that help us reason spatially, implement an intricate
error-correcting code called the grid code |Sreenivasan and
Fiete| (2011)).

Biological systems also often feature a high degree of
modularity, which is the physical division of a large system
into functionally distinct parts. This is thought to contribute
to their robustness, as the failure of one subsystem will not
necessarily cascade and cause the failures of others. The
genome is believed to have spatial and functional modularity
Zheng and Wang| (2022)), and a common view of the brain is
that it is composed of many modules responsible for differ-
ent functions that combine to form our intelligence Meunier
et al.|(2010).

On the other hand, all biological systems have emerged
through the brutally simple process of evolution: improving
fitness via essentially random genetic mutations. It is in-
credible that evolution was able to produce modular, error-
correcting structures through this process, given that they
represent a vanishing fraction of the configuration space of
possible solutions to a given problem. A tantalizing ques-
tion is therefore what conditions and principles drive evo-
Iution toward such structures? The answer to this question
is significant, as it gets to the root of forces that drive the
crystallization of life.

In this work, via experiments in Boolean networks, we
show that both error-correcting codes and modularity are
typical co-emergent results of evolution in a noisy environ-
ment. We show that this occurs because organisms with
error-correcting properties are better protected from lethal
mutations than those without, allowing them to more effec-
tively search configuration space for improvements. From
this, we introduce the concept of error correction-enhanced
evolvability: organisms with error-correcting codes are
more evolvable than those without. Noise bootstraps this
phenomenon, suggesting that noise plays an important role
in evolving complex structures.

Our method is to explicitly exploit the connection be-
tween fault-tolerant computing and life to understand how
error correction and modularity may emerge via evolution.
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We use Boolean networks as examples of primitive artificial
lifeforms and evaluate them based on their ability to perform
a computation in the presence of noise. Explicitly, as shown
in Fig. [I] a this is done by initializing a network with the
inputs to a computational task via assigned input nodes (or-
ange) and probing it for the output by reading from a set of
output nodes (green) after many dynamical timesteps. Noise
is injected during the dynamics by randomly flipping bits of
the network state with probability pphys. The logical error
probability pj,, is the probability that the output node does
not contain the correct value at the end of the computation.
For a given pypys, networks with lower pjo, are more effec-
tively performing the computation in the presence of noise.
Starting from completely random initializations, we use piog
as a measure of fitness in an evolutionary procedure to gen-
erate improved networks. Fig.[I|b shows the dynamical tra-
jectory of the network shown in Fig.[T]a, which was evolved
to compute AND. The network has evolved substantial fault
tolerance: it robustly performs the AND computation, en-
codes the outputs in codewords of maximum Hamming dis-
tance (the codewords differ by every bit), and stabilizes them
against noise. Evolution has discovered a strong error cor-
rection mechanism! Remarkably, contrary to intuition on
optimization on massive, rugged fitness landscapes, evolu-
tion seems to routinely find these codes. Fig.|l|c shows the
evolutionary trajectory of several hundred randomly initial-
ized populations, almost all of which achieve pphys < Piog,
as shown in Fig. [T]d. Fig.[I]e shows that networks achieve
this by implementing strong error-correcting codes like the
one in Fig. b, which allows pjeg to scale less than linearly
with ppnys, as shown in Fig. E] f.

One explanation for this overwhelming typicality of er-
ror correction is that error-correcting codes not only pro-
tect an organism from the noise that strikes randomly dur-
ing the dynamics but also from systematic manipulation of
the genome. This is supported by data presented in Fig.
g. We can see that as error correction improves (and piog
decreases), there is a corresponding decrease in the number
of mutations that are lethal to an organism (where a lethal
mutation is one that prevents an organism from completing
the desired computation perfectly in the absence of noise).
Therefore, acquiring some error correction makes it easier
to acquire more error correction, leading to an “explosion
of error correction” in our experimental results, and possi-
bly the natural world. We dub this principle error correction
enhanced evolvability.

Additionally, Figs. [I] h and i show that when scaled to
composite computational tasks (that require more than one
primitive), the structure of the computation is firmly im-
printed on the structure of the organism. Noise promotes
modularity in dynamic systems. These tasks also have out-
put spaces larger than 1 bit, and demand more advanced
error-correcting codes than what is shown in Fig. |I|b. The
shared AND task, as shown in Fig. |1| h, has a 2-bit output

space. Interestingly, independent memory modules are de-
veloped that correspond to the physical modules, such that
one bit of the output is coded for in each module. This kind
of code is formally efficient in the sense that the number of
bits it can encode scales linearly with the number of physical
bits (it is asymptotically a constant rate code). This modu-
lar assembly of codes also reflects beautifully what we see
in the brain. The sequential AND task, as shown in Fig. [T]i
has 3 possible outputs (less than two bits), so it develops a
distributed code where each codeword is of maximum ham-
ming distance.
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Figure 1: Noisy Boolean networks evolve strong error-correcting codes and modularity a A Boolean network that has
adapted to solve the AND task in the presence of noise. Inputs are provided to the orange nodes 0 and 1 at time t=0 and, the
answer is expected at the green node 2 at t=T. b Examples of noisy dynamical trajectories of the network in (a) for each of
the 22 possible input states. The network encodes the answer in codewords of maximal Hamming distance and stabilizes the
codeword against noise events. Codewords may be taken as the final state of the network x[T] for the different output values.
The two codewords are visualized on the network graph. The boundary of the circles indicates the node function, and the fill
indicates the codeword. ¢ Evolutionary trajectories of 150 randomly initialized populations learning to solve the XOR and
AND tasks. Populations were not pruned, every population that was started is included in the statistics. The solid line indicates
the median logical error probability, and the shaded region indicates the interquartile range. d Distribution of final logical
error probabilities over all populations. In both tasks, typical organisms learn to suppress errors far below the physical noise
level (pphys» indicated by the dashed black line). e Distribution of average Hamming distance between the codewords Cy and
C1 over all populations. The typical organism uses a strong error-correcting code to suppress errors. f Scaling of the logical
error probability with the physical error probability for the highest performing organisms: logical error probability is strongly
suppressed relative to physical error probability. g Comparing the median logical error probability to the fraction of lethal truth
table mutations for the populations of AND organisms from (c). We see that the lethal mutation fraction decreases with logical
error, a direct demonstration of the principle of error correction enhanced evolvability. h Organisms evolved to solve the shared
AND task develop a strikingly modular physical structure and also employ a modular error correcting code, where each output
bit is independently encoded by the nodes in the corresponding module. I The sequential AND task also develops modular
structure, but not modular error correction. It instead develops a distributed, maximum Hamming distance code.



