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Abstract
The Wireworld cellular automaton effectively models the
behavior of electrical currents flowing through wires, en-
abling the creation of circuits capable of performing logic
operations. Importantly, Wireworld has been proven Turing
complete, further underscoring its computational potential.
In this work, we expand Wireworld from a two-dimensional
grid to a three-dimensional cuboid and harness the power
of digital evolution to construct operational digital brains.
These brains are evolved to control simulated robots that
must perform simple navigation and harvesting tasks. To
the best of our knowledge, this work represents the first time
evolutionary computation has been employed in conjunction
with the Wireworld cellular automaton.

Introduction
Wireworld is a cellular automaton invented by Brian Silver-
man and first presented in his program Phantom Fish Tank
in 1987 (Dewdney, 1990). In Wireworld, every cell can ex-
ist in one of four states: empty, wire (a.k.a., conductor),
charge (a.k.a., electron head), and reset (a.k.a., elec-
tron tail). There are also four rules that determine the state
of each cell on each update.

1. empty→ empty
2. wire→ charge,

if exactly 1 or 2 neighbors are charge
3. charge→ reset
4. reset→ wire

Wireworld’s rules result in behavior similar to electrical
currents in copper wires. These rules can give rise to in-
teresting dynamics. For example, we can use the neighbor
limit in rule (2) to make a diode, a simple circuit that allows
charge to flow in one direction but not the other. As Fig-
ure 1(a) shows, charge can flow from the top wire cell to the
bottom one. Conversely, in Figure 1(b), charge originating
at the bottom is not able to flow through the structure.

Different arrangements of wire can implement logical op-
erators and conditionals, and Wireworld has been shown to
be Turing complete (Tringham, 2014; Cook et al., 2004).
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Figure 1: Example of wireworld arrangement implementing a
diode.

However, since wires cannot cross, laying out complex pro-
grams can require huge grids. One solution to this prob-
lem is the introduction of strong and weak charge (Gladkikh
and Nigay, 2018), though this is not explored further in this
study.

We utilize digital evolution to construct three-dimensional
“wire brains” guided by the Wireworld rules. A wire
brain’s functionality stems from the positions of wire and
empty cells plus designated input and output cells.

We show that wire brains can achieve high performance
on a maze task and a harvesting task, particularly when given
access to external memory. However, brains without exter-
nal memory were also able to implement memory in wire
constructs.

Methods
In this work, we employ the Modular Agent-Based Evolver
(MABE) Bohm and Hintze (2017), a tool specifically de-
signed for digital evolution research. We chose to utilize
two navigation-based tasks and other components, such as
the selection process, already present in MABE, with the
only new code being our novel “wire brain.”

Wire Brains A “wire brain” consists of two components:
a cuboid array of cells, each either wire or empty, and
two lists determining which cells connect to inputs and out-
puts. Our implementation uses a direct encoding: mutations



act directly on the cells and connection lists. In our experi-
ments, inputs and outputs were restricted to the bottom and
top layers of the brain, respectively.

In order to process inputs and generate outputs, cells as-
sociated with active inputs are set to charge. The brain
then runs for a certain number of time steps using standard
Wireworld rules, after which the state of the cell associated
with each output determines the brain’s output.

We incorporated several parameters to allow for cus-
tomization, three of which were tested and are described
here. First, we added support for external memory, imple-
mented as additional outputs collected each time step and
supplied as inputs on the next. Second, we introduced an
option to clear the charge and reset states of the brain
before new task inputs were introduced (Clear Between Up-
dates, or CBU). Finally, we allowed customization of the
brain’s width, height, and depth.

wall

left

right

agent
start
positions
example
path

a b
s

s

s

wall

berries

agent

Figure 2: Illustrations of Maze (a) and Berry (b) tasks.

Tasks In the Maze task (Edlund et al., 2011), agents must
navigate mazes made up of long hallways separated by walls
(Figure 2(a)). In each wall, there is an opening with a marker
that informs the agent if the next opening is to their left or
right. Every time step, agents can move left, right, or for-
ward. Agents have a limited lifetime in which they must
respond to and remember the markers in order to solve each
maze before time runs out.

In the Berry task (Figure 2(b)), agents are provided a lim-
ited amount of time to collect red and green berries in a
walled grid arena. On each time step, agents can move for-
ward, turn left, turn right, or collect. If an agent collects,
the empty location will be filled with a new random berry
when they move to a new location. They receive 1 point for
every berry they collect if that berry is the same color as the
last berry collected; otherwise, they lose 0.4 points. Thus,
agents must minimize switching to maximize their score.

Experiments For each task, we tested eight conditions,
consisting of all combinations of: Clear Between Updates
(CBU): on / off, brain size: small (5 × 10 × 5) / large
(10× 10× 10), and external memory: 0 / 4.

For each condition, we ran 62 replicates. We used tourna-
ment selection with discrete generations and population size
100.

Results and Discussion

We found that wire brains can perform well on both tasks un-
der most conditions. Wire brains were capable of evolving
connections between inputs and outputs, employing mem-
ory, and developing circuits for reactionary behavior.

The maze task requires agents to use memory, so we were
not surprised that we found no successful solutions in con-
ditions where CBU was on and external memory was un-
available. While we did see perfect performance develop in
all but one condition with CBU on and external memory, we
did see perfect agents develop in a few conditions with CBU
off and no external memory (1 “small brain” and 3 “large
brain”). This confirms that evolved wire brains are capable
of implementing memory algorithms directly and need not
rely on external memory.

Scoring in the berry task is somewhat dependent on the
randomness of berry replacements. Previous work suggests
that a trivial agent can achieve a score of 60, whereas scores
exceeding 100 require sophisticated strategies. Of the condi-
tions with CBU off, we observed no high-performing agents.
We found that all conditions with CBU on were able to gen-
erate high-preforming agents (at least 12 out of 62), but, con-
trary to our expectations, the best performance was seen in
conditions with CBU on and without external memory. We
had believed that memory of the color of the last berry col-
lected was essential for high-performance; however, evolu-
tion found a simple reactionary strategy using environmental
cues that worked effectively without memory.

Figure 3: Three consecutive frames from an active wire brain
trained on the berry task. Yellow is charge, red is reset, and
gray is wire.

Figure 3 shows an example of a wire brain evolved on
the berry task. Unlike human-designed instances of Wire-
world, this brain appears chaotic and unorganized. A video
of the brain in Fig. 3 can be found at https://youtu.
be/MB3BaS5sT2M.

Conclusion We have shown that Wireworld is evolvable.
Considering that we have only shown a single implementa-
tion and that there are several alternatives to the update rules,
genetic encoding, and mutational operators which could be
considered, we feel that this is a promising substrate and
should be a target for future research.

https://youtu.be/MB3BaS5sT2M
https://youtu.be/MB3BaS5sT2M
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