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Abstract—The human brain is a vastly parallel computing
machine, expending as little as 20 watt, capable of sustaining
severe damage without major loss of function, and the ability
to quickly adapt and respond to novel situations. However,
even after a century’s worth of scientific inquiry into the inner
workings of the brain, we know remarkably little about how
computation in the brain functions. Common for every part of
the brain is that its functionality arises as individual neurons
form connections among themselves, thus studying the underlying
principles that form these networks and how they compute
is a much more tractable prospect than tackling computation
on a cognitive level. In this paper we describe the cultivation
of biological neural networks originating from human stem-
cells in-vitro in special micro-electrode arrays, which allows the
cultures to be interacted with through the medium of electricity.
Next we describe the Reservoir Computing (RC) approach to
harnessing the undirected computational capability of biological
neural networks. Lastly we describe a proof of concept a closed
loop system has been developed where the sensory input of a
simulated robot is used to stimulate the neurons, and the resulting
dynamics used to steer the robot using Reservoir Computing.

Index Terms—cyborg, self-organization, neurons, electro-
physiology, reservoir computing, bio-inspired artificial intelli-
gence

I. INTRODUCTION

The digital computer has enjoyed an exponential increase
in processing power over the last 50 years thanks to the bi-
annual increase of transistor density, dubbed Moore’s law [1].
During this exponential growth it looked like there was no
task that computers wouldn’t eventually solve by just waiting
a few years for transistor density to catch up, a sentiment
best summed up by a quote from Marvin Minsky, one of the
early AI pioneers, made in 1967: “Within a generation [...] the
problem of creating ’artificial intelligence’ will substantially
be solved.” [2] However, as processors have conquered the
world of digital logic where facts can be neatly represented
by numbers and binary relations, they are still remarkably
unsuited at interacting with the real world. Even as design

complexity and power consumption has effectively ended
Moore’s law, it is hard to imagine how an increase in FLOPS
would make tasks such navigating complex environments,
understanding natural language, or acting independently any
easier. Not incidentally, these are the tasks that the brain is
extraordinarily well suited for, however the underlying mech-
anisms that allow the brain to effortlessly do what machines
cannot remain as enigmatic as ever. Part of the reason for
this is that nature follows a completely different approach to
engineering structures. Humans prefer to design contraptions
consisting of heterogeneous components that act together in a
precise and well-defined manner according to some blueprint.
In contrast, the brain emerges from a set of basic principles in
a process of self-organization, creating reliable, adaptive and
complex structures from (relatively) homogeneous neurons. As
a result, no two brains are similar, not even those of identical
twins which greatly complicates any attempt at explaining how
the brain works. For instance, a description of how visual
perception works must hold for every brain in order to be
useful, not just for a single individual, since such a description
is of no use in a different individual where the process of self-
organization have opted for a different path.

Understanding how neurons self-organize may hold key
insights for many different fields. As an example, computer
scientists could use the principles employed by neurons to
create more robust systems capable of solving real world
problems, while neuroscientists could better understand why
the brain often fails to heal from certain injuries like strokes.
Despite the wildly diverging goals of these two fields, and
many more, they all have a common interest in understanding
the fundamental properties of neurons. To forward this goal
the authors have constructed a system which combines neural
tissue with a simulated machine to create a platform for further
study of neurons.



Fig. 1. A: The MEA2100 headstage with an MEA carrying a neural culture (B). C - F: Neural cultures growing on MEAs (B) viewed through a microscope.
D1 - F1: Electrical activity (voltage) as a function of time measured on a single electrode from corresponding MEAs. D1 shows the electrical activity of a
young network (D), whose spiking is frequent and seemingly random, whereas F1 shows more structured activity with large bursts typical of more mature
networks.

A. Interacting With Neural Networks

In order to study the formation of structure and the emer-
gence of function in neural networks it is necessary to be
able to observe the physical structure and interact with the
signaling process within the networks. This is achieved by
growing neurons from stem cells in-vitro in Micro Electrode
Arrays (MEA) as shown in figure 1 B. The MEA is lined
with electrodes which can be viewed on a microscope as seen
in figure 1 C, which enables real-time recording of electrical
activity as seen in figure 1 D1 - F1. The measurements are
done using a MEA2100 system supplied my multichannel
systems GmbH, shown in 1 A.

B. A Proof Of Concept Cyborg

In order to provide a experiment-platform a proof of concept
cyborg (cybernetic organism) has been implemented, based
on the concept shown in figure 2 as part of an ongoing
interdisciplinary project [3]. The proof of concept cyborg uses
data from its sensors to stimulate a neural culture, interpreting
the resulting dynamics, i.e the behaviour of the neural network
to decide which direction it should move. This results in
a cyborg that acts as a closed loop system, i.e one that
operates without any outside (human or otherwise) correction
or interference.

Fig. 2. The concept for the cyborg. Electrical activity from a neural network
in an MEA is measured and used as input to an artificial neural network which
steers a robot either left or right. The sensory data captured by the cyborg
is transformed into an electrical signal which applied to the neural culture,
effectively creating a feedback loop between the behavior of the robot and
the behavior of the neural culture.

II. CULTIVATING NEURAL CULTURES

Cultured networks consisted of dopaminergic (DA) neurons
seeded at a density of 100 000 cells per MEA (Seen in
1 C). The DA neurons were derived from induced pluripo-
tent stem cells (iPSCs) through exogenous addition of timed
mesencephalic patterning factors over a period of 16 days
allowing partial recapitulation of developmental processes. DA
neuron morphology was confirmed by positive expression of
molecular marker neuronal marker beta-III tubulin (Tuj-1),
and tyrosine hydroxylase. MEAs were coated with poly-L-
ornithine (PLO) and laminin. The cultures allowed to mature
for 4 weeks prior to electrophysiological recording.

III. INTERPRETING NEURAL DYNAMICS

Harnessing the computational power of a neural network
is no simple task. No two networks are the same, and the
same network may exhibit different behavior as it grows and



matures. As a result, attempting to understand the detailed
workings of a single culture is nearly insurmountable, the
chosen approach must hold for every single network. When
approached from the framework of artificial neural network it
may be tempting to attempt to shape the networks through
Hebbian learning [4], unfortunately this approach does not
scale beyond the ability to imprint very simple spiking behav-
ior. Furthermore, attempting to impose desired functionality
on a network is ignorant to the fact that the network has
already been organized into a computing network by the
neurons themselves, it does not need to be ”programmed” as
a computer would. Instead we apply the Reservoir Computing
(RC) where we view a neural network as an unsupervised
classifier. The general principle of RC is shown in figure 3:
In order to classify input is used to perturb a reservoir, and
the resulting dynamics are classified using a linear classifier
called a readout layer. An important detail is that only a
small portion of the dynamics of the reservoir is measured,
as sampling the state of the entire reservoir is impossible.
In terms of neural cultures, the dynamics of the reservoir
encompasses chemical gradients, structures and differences
in voltage, however the measured dynamics is restricted to
only 60 electrodes, greatly limiting what we can know of the
reservoirs inner state. Although interacting with neural cultures
using reservoir computing is currently unproven there are
several reasons to suspect it to be a good fit: Firstly because it
has been been successfully applied to digital reservoirs which
have taken inspiration from living neural networks, such as
Echo state networks [5] and recurrent neural networks [6].
Secondly, because it is has been shown to work on a physical
system in the form of an analog circuit [7]

Fig. 3. A conceptual reservoir computing setup. The reservoir can be a
physical or virtual system as long as its dynamics responds in a nonlinear
fashion when it is perturbed. In order to approximates some function f(x)y,
input (x) is translated to a perturbation suitable for the chosen reservoir, while
the resulting dynamics is interpreted to the resulting value (y) by the readout
layer.

A. Establishing A Common Language

Reservoir computing provides a nice way of circumventing
the need for a deep understanding of the inner workings
of the dynamics of the reservoir substrate [6], i.e. neural
network culture. However, it is still necessary to translate
electrical activity to a format that can be interpreted by the
readout layer, and from sensory input in the robot to electrical
stimuli. Figure 4 shows the first step of this process: Analog

electrical activity recorded from the MEA is processed by
a spike filter, reducing it to a digital spiking/not spiking
representation. This representation is then further condensed
to a vector representing the frequency of spikes for some
interval of time which can then be fed to the readout layer.
In the opposite direction, shown in figure 5, the distances
measured by the robots sensors is transformed to a frequency
where a short distance translates to a high frequency and
vice versa. Stimulus is defined only as a frequency, i.e the
period between application of a square pulse (although before
an experiment parameters such as amplitude and duration for
this pulse, or even its shape can be altered). These frequencies
are then transformed into analog waveforms resembling spikes
which are then applied at different electrodes. The feedback
system is highly configurable, allowing for many different
mappings between sensory input and resulting stiumulus, with
the default configuration shown in figure 5 where the distance
perceived by each ”eye” on the robot corresponds to the
stimulus frequency on a given electrode.

Fig. 4. Analog electrical activity is first transformed to a binary spiking/not
spiking representation. Next the spikes are aggregated in an averaging filter,
resulting in a vector which can be input to the readout layer.

B. Architecture

An overview of the final cyborg implementation is shown
in figure 6. In the overview the data-flow between neural
culture and robot control is shown, highlighting the fact that
the robot control does not have to be located near the neurons
since the information is transmitted over network. In the top



Fig. 5. Sensory data captured by the simulated robot is transformed into a set
of frequencies where a short distance to a wall translates to a high frequency.
These frequencies are then used to create analog waveforms resembling the
spiking of neurons. The perturbation transform can be configured on a per-
experiment basis, ranging from a binary on/off transform where seeing a wall
elicits maximum allowed stimuli, to more sophisticated transforms such as
exponential falloff.

right part of the figure the MEA2100 lab equipment used to
take measurements can be seen. An MEA holding a culture
is inserted into the Headstage which can measure and apply
stimuli at high precision. The headstage is connected to an
interface board which hosts a user-programmable digital signal
processor which is being used to apply periodic stimuli via the
MEAME-DSP module. The interface board is connected to a
lab-computer which hosts the MEAME module, responsible
for broadcasting neural recordings in real time and hosting a
stimulus request service. At the other side of the network gap
the SHODAN system which consists of two main components:
The mundane infrastructure parts, data filtering and such, and
the more specialized robot controller which uses reservoir
computing to control a simulated robot.

Fig. 6. A condensed overview of the final system. Data going from the
neural culture to the robot control unit is colored red (also indicated with
arrowheads for the colorblind) while sensory data going from the robot control
unit to the neural culture is colored in green. The figure also highlights the
shape of the data, showing how neural wave-forms from several electrodes are
transformed to a vector of scalars as input for the robot control, and vice versa
for stimulus. The flow of data going from the reservoir to the robot controller
(red) corresponds to figure 4, while the flow going from robot control to the
neural culture (green) corresponds to figure 5.

C. Robot Controller

Owing to the mercurial nature of neural cultures it is
necessary for the reservoir computer to be able to reconfigure
the readout layer during an experiment since there is no
way to reset a neural culture to a previous state. As shown
in figure 7 the robot is faced with several challenges and
awarded a score based on how well it avoids the wall. The data
acquired from each separate run is then used by an optimizing
algorithm which runs concurrently with the experiment in
order to optimize the readout layer to avoid colliding with
the wall such that at the conclusion of each individual run



the experiment runner can then fetch the best readout layer
currently found.

Fig. 7. The goal of the cyborg is to not collide into walls in a simple maze-
environment. Four distance sensors (blue) radiate from the body (green) which
allows the cyborg to sense the presence of an obstruction. Since the optimal
strategy of avoiding walls is simply running in a circle, the faces scenarios
where it is on collision course forcing it to respond.

IV. OUTLOOK

The described system for interfacing neural in-vitro cultures
to the digital domain can be a starting point for hybrid
biological-digital systems. However, the project main purpose
is to elucidate neural responses to perturbation, such as
the computational efficiency of Parkinsonian or axotomized
(severed) neural network compared to a healthy network.
Further, the project aims to use bio-inspired methods toward
introducing the underlying self-organizing process of learning
into artificial systems.
Dynamics is the common property of neural culture’s spiking
behaviour and the reservoir’s change of state in reservoir
computation. Knowledge of how neural systems adapts it’s
dynamics by self organization include both exploration and
stability this is features hardly found in artificial systems.
Artificial Neural Networks (ANNs) are trained to one task
and needs to be retrained to solve a new task, i.e. Catastrophic
interference [8], instead of adapting to new information. By
introducing similar dynamic adaption properties in reservoirs
by mimicking the neural adaption by tuning physical resevoirs,
e.g. nanomagnets [9] or carbon nanotubes [10], artificial
systems that may learn (adapt) by self organization instead
of being trained by an 2external” global system.

V. CONCLUSION

A complete system for a closed-loop cyborg has been imple-
mented, serving as a platform for performing experiments on
the computational capability of neural cultures. This entails
a pipeline for broadcasting measured analog neural activity
to a network, a flexible pipeline for processing analog neural
measurements to digital spike data, an online re-configurable
reservoir computing setup, and a pipeline for transforming
digital problem representations to analog spiking as stimuli.
Cultures specifically intended for use in the proof of concept
cyborg are currently being grown in the lab, providing the final
piece.
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