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Abstract—Human-machine systems are increasingly being 
used in a variety of scenarios, so it is particularly important to 
determine the operator's mental workload (MW) levels in time. 
In this study, EEG was selected as the main indicator for MW 
levels. After we used Stacked Denoising AutoEncoder and K-
nearest Neighbors algorithm to classify MW levels separately, we 
merged the two models by stacking. Finally, we proved its 
effectiveness by comparing this new model with the mainstream 
classifiers and the original two models. 

Keywords—Human-machine, mental workload, Stacked 
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I. INTRODUCTION 
Human-machine (HM) systems are widely applied in 

complex control environments [1]. HM systems have the 
capability to stabilize the machine performance [2] by 
incorporating the operator's supervision, decision-making [3] 
and other capabilities. However, as a critical component of 
HM system, operator’s performance is instable [4] because of 
the intention distraction or mental fatigue [5]. Such issues are 
major factors that cause many serious human factor accidents. 
Many reported works indicated the mental workload (MW) 
was closely related to the brain activity, mental resource 
utilization, stress and the working memory for information 
processing during tasks [6]. To this end, MW can be used to 
assess the operator's cognitive working state aiming at 
reducing the risk of human performance degradation. 

The MW is vulnerable to many factors under human-
machine interaction. There is currently no well-established 
definition of MW [7]. In literature, the MW can be considered 
as the amount of operator resources taken up by task 
requirements [8]. When the workload increases and exceeds 
the general working capacity of the operator, it causes 
excessive MW [9] and results in inability of information 
analysis and decision making for the operator [10]. On the 
other hand, low MW can cause the operator to become 
inefficient [11]. Therefore, an accurate and effective model is 
required to be designed for evaluating the MW and to help 
stabilize the human performance within the proper range. This 

is especially important for reducing the operation risks and 
increasing operational safety of the human-machine systems. 

1.1 Related works for MW assessment using EEG  
There are three main ways to assess MW: 1. Subjective 

measures 2. task performance measures 3. neurophysiological 
signals [12]. Subjective measures are also known as subjective 
rating scales, of which the two most widely practical methods 
are Subjective Workload Assessment Technique (SWAT) and 
National Aeronautics and Space Administration-Task Load 
Index (NASA-TLX) [9]. However, subjective measures lack 
objectivity and are limited by the low time resolution for data 
collection [3]. Task performance measures are not suitable for 
implementation in those task environments where the 
performance parameters are implicit and cannot be collected 
directly [13]. Different from the two classical methods, the 
neurophysiological signals, such as electroencephalogram 
(EEG), electrocardiogram (ECG), functional Near InfraRed 
Spectroscopy (fNIRS), event-related potential (ERP) [6], are 
easy to acquire and to be processed in an online fashion. 
Among them, EEG has high sensitivity, strong objectivity and 
easy implementation of task conditions. From the literature, 
EEG was also closely linked to the alertness and the fatigue of 
operators [14]-[15] who were engaged in the task 
environments for nuclear power plants [16] and driving [17]. 

Extensively reported works applied pattern recognition 
methods to analyze EEG signals. The pattern classifiers can 
improve the accuracy on modeling the mapping between the 
EEG signals and the human cognitive state. Based on a 
hierarchical Bayesian model, Wang et al. [18] designed an 
EEG-based workload classifier with correct recognition rate of 
80%. In recent studies, Support Vector Machine (SVM) was 
used by Ke et al. [19] and they built a cross-task MW 
identification model for n-back tasks. By incorporating the 
EEG features of power spectrum within 3-15 Hz frequency 
band, Dornhege et al. [20] identified the tasks under different 
difficulties by using Linear Discriminant Analysis (LDA). 
Vuckovic et al. [21] found that the Learning Vector 
Quantization (LVQ) neural network achieved the best 

* Corresponding Author: Zhong Yin, Address: Jungong Road 516, 
Yangpu district, Shanghai, China. E-mail: yinzhong@usst.edu.cn. 

mailto:zhangjh@ecust.edu.cn
mailto:jianhuaz@oslomet.no
mailto:zhangjh@ecust.edu.cn


classification performance among three different neural 
network frameworks. 

1.2 Overview of Stacked Denoising AutoEncoder  
Although the pattern recognition methods can achieve 

higher MW recognition accuracy, the classical shallow 
machine learning methods have the difficulty in mining the 
hidden information associated with the operator's cognitive 
state variables. To this end, we attempt to implement the 
Stacked Denoising AutoEncoder (SDAE) to build a deep-
learning based MW classifier. Unlike the general neural 
network framework, the deep learning model possesses deeper 
complex network structure [22]. It increases the number of 
hidden layers in the feedforward path. In particular, SDAE are 
formed by stacking multiple Denoising Auto-Encoders 
(DAEs). The DAE is a special Auto-Encoder (AE). It learns 
higher-level features from the raw data with superimposed 
noise [23]. The SDAE generates a network structure 
connected by multiple, consecutive DAEs. By feeding the 
noisy input data, the layer-by-layer training scheme was 
performed with the functionality for unsupervised feature de-
noising [24].  

For neurophysiological signals, the input features are 
usually accompanied with various types of noise. Therefore, it 
is very crucial to extract the noise-free EEG features by 
recovering the original signals. Since SDAE employed noise 
elimination during learning the weights of deep neural 
networks, its stability can be achieved by adding different 
types of noise into the training set [24]. The training procedure 
of the SDAE consists of two stages, i.e., pre-training and fine-
tuning. The unsupervised layer-by-layer pre-training is carried 
out before fine-tuning the parameters of the entire network 
[22]. In recent years, SDAE is widely used in face recognition 
[25], defect detection [24] and other fields, many of which 
have been developed and commercialized successfully. 

II. EXPERIMENTAL DATA 
The data used in this experiment has been collected on the 

Automation-enhanced Cabin Air Management System (Auto- 
CAMS) in previous studies [26]. Auto-CAMS is a system that 
fulfills the needs of complex HM missions by simulating an 
air handling environment in an aircraft cabin [3]. The EEG 
signals of the experimental participants were collected by the 
Nihon Kohden biomedical signal processor and displayed in 
real time by Neu-rofax software. 

2.1 Experimental participants and setup  
Eight on-campus postgraduate students (male, aged 21-24 

years) participated in the experiment as volunteers, by 
informed consent. Each underwent complete Auto-CAMS 
operation training prior to the experiment and was 
anonymized consecutively with a label from S1 to S8. 

Auto-CAMS controls air quality through four subsystems: 
oxygen concentration, carbon dioxide concentration, pressure 
and temperature. Participant's task is to manually adjust the 
parameters of the failed subsystem and stabilize it within the 
target range. The system can change the complexity of the 
task by manipulating the Number Of Failed Subsystems 

(NOFS) to meet different MW requirements. The greater 
number of failed subsystems corresponds to the higher task 
complexity and MW level. Participants are required to 
conduct two experiments separately for two consecutive days, 
each of which is divided into 8 phases and lasts for 100 
minutes. The first and eighth stages correspond to the 
condition of NOFS=0 and last for 5 minutes. The remaining 
six stages last for 15 minutes and correspond to the conditions 
of NOFS = 1, 3, 4, 4, 3, 1, respectively. For the participants, 
the stage of the NOFS=0 condition does not require them to 
operate, so these two stages can be used to verify whether the 
MW level is restored. The condition in which NOFS=2 is 
omitted is to prevent a situation in which excessive 
experimental time leads to exhaustion of participants and 
affection of their MW levels. This multi-day scheme with 
cycle task complexity can capture the MW level information 
more comprehensively and facilitate the subsequent algorithm 
research. 

2.2 Data preprocessing 
The 11 electrodes used to collect the EEG data are placed 

at the F3, F4, Fz, C3, C4, Cz, P3, P4, Pz, O1 and O2 positions 
as specified by the 10-20 system. Each phase of the 
experiment generates a dataset, which contains 450,000 data 
points corresponding to 11 channels. Each participant 
conducted two eight-phase experiments, so the corresponding 
number of datasets was 16. 

Each dataset first eliminates eye movement artifacts and 
high frequency muscle noise using Independent Component 
Analysis (ICA) and 4th order Butterworth IIR filter (with low 
pass frequency of 40 Hz) respectively. For sufficient 
temporal resolution, the data is split in units of two seconds. 
Then Fast Fourier Transform (FFT) with a frequency 
resolution of 0.5 Hz is used to calculate the Power Spectral 
Density (PSD) features of each segment. Through the 
calculation of the four frequency bands of each channel: theta 
(4-8Hz), alpha (8-13Hz), beta (14-30Hz) and gamma (31-
40Hz), we obtained a total of 44 frequency domain features. 
And 16 frequency domain features can be derived by 
calculating the power differences between the left and right 
hemispheres of the scalp. Finally, with the time-domain 
features of mean, variance, zero crossing rate, Shannon 
entropy, spectral entropy, kurtosis and skewness calculated by 
11 channels, a total of 137 features were obtained. 

The features of the second, fourth, fifth and seventh phases 
in the experiment were selected for the next study. The feature 
sets of the four phases on the same day of each person are 
connected in series to form a feature matrix of 1800×137, 
wherein the 900 data points corresponding to the second and 
seventh phases are determined to be low MW level, and the 
remaining data points are determined as high MW level. 
Finally, the 16 newly formed total datasets are subjected to 
standardized processing and adding labels of MW levels. 

 

 

 



III. METHODOLOGY 

3.1 Stacked Denoising AutoEncoder 
The reproducibility of data in SDAE is achieved through 

its basic composition Autoencoder (AE). AE consists of a 
three-layer Multi-layer Perceptron. By training the equivalent 
transformation of the input, a hidden layer's different 
representation of it is obtained. In this study, the hidden layer 
dimension adopted by AE is smaller than the data dimension, 
so the reduced dimensionality expression of input can be 
obtained through training. The transformation between every 
two layers in AE is a linear transformation plus a non-linear 
activation. The input layer to hidden layer mapping is defined 
by the sigmoid activation function ( ) ( ) 1/ 1 zz e−= + f , 

-( )

1= f( + ) =
1 + eh Wx+θx Wx θ                (1) 

Where DR∈x  is defined as the input to AE and dR∈hx  is 
the vector of activation values in the hidden layer. The bias 
vector and weight matrix correspond to dR∈θ  and 

d DR ×∈W  respectively. And R represents the real number, D 
and d represent matrix dimensionalities. Then the hidden layer 
to the output layer mapping by the function expressed as 
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DR∈ox  is the output of the AE, and the tied weights are 

usually used to make ' = TW W . The loss of input and 
output is represented by the square error cost function, 
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The Back Propagation (BP) algorithm can use the above 
function to determine W , θ and 'θ . It corrects weight by 
calculating the partial derivative of each neuron by the error 
function until the preset precision or maximum number of 
learnings is reached. The BP algorithm is a pivotal and 
efficient algorithm for multi-layer neural network training. 
The adjusted parameters are defined as *W , *θ and '*θ  and 
can be represented by the following formula, where 
N represents the number of training data points. 
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The input layer of the AE has the same number of neurons 
as the output layer, and the essential function of the AE is to 
extract the high-dimensional expression of the input. 
Therefore, after training an AE, the output of the hidden layer 

can be used as input to train a new AE, and the second high-
dimensional expression of the original input can be obtained. 
Based on this method, the stack of layers forms a Stacked 
AutoEncoder (SAE), wherein the output of the nth hidden 
layer can be expressed as 

(n)
hx   (5) 

( ... ( ( ) )... )f f f= + + +(n) (2) (1) (0) (1) (2) (n)W W W x θ θ θ  
Finally add a top layer containing two nodes to form a 
network that can indicate the MW levels, the output of which 
is defined as 

( ) ( )f s= + =(n) (0)
hy Vx v x                        (6) 

where [1 0]T=y and [0 1]T=y  represent the low MW 
level and high MW level, respectively. V is defined as the 
output weight matrix and v is the output bias vector. 

In order to increase the ability of the SAE to reduce noise, 
we randomly set the input (i)x  through a uniform distribution 
to 0 to cause interference before training, where the 

probability is p to elicit 


(i)

x and  1, 2,..., D=i . 

0p
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                               (7) 

The resulting network is SDAE, and the parameters are fine-
tuned by the BP algorithm after layer-by-layer pre-training. 

3.2 K-nearest Neighbors algorithm 
The K-nearest Neighbors (KNN) algorithm first finds k 

training samples that are closest to the testing sample, and 
then predicts the category or value based on their information. 
The distance between the samples is generally calculated by 
the Euclidean Distance 
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Where ( , ,..., )=(i) (i) (i) (i)
1 2 nx x x x , (i)

jx represents the jth 

attribute of sample i .The k samples closest to the testing 
sample can be obtained by sorting. The categories 
corresponding to this known sample set are counted, and the 
most numerous category is the category of the testing sample. 

The choice of k value is critical to the accuracy of the 
model. The enumeration method is generally used: the sample 
error is calculated separately using different k values, and the 
k value corresponding to the minimum sample error is 
selected. 

3.3 Stacking 
Integrated learning is divided into three methods: bagging, 

boosting and stacking. Bagging and boosting correspond to 
parallel and serial calculation methods, respectively. Stacking 
is different from the above two, and its core idea is k-fold 
cross-certification. K-fold cross-certification can effectively 
avoid the over-fitting phenomenon caused by the limited 
number of samples, generally k=5. 



Stacking is mainly divided into four steps. First, the 
training set is divided into five equal parts according to the 
sample order, and the first four of them are trained by the base 
classifier. Then the fifth part of training data and the testing 
data are predicted using the trained model. After the process is 
completed, the portion of the training set except the fourth part 
are selected for retraining and the trained model is used to 
predict the remaining data set. This process is repeated four 
times based on the different selected portion of the retraining. 
Finally, five prediction values can be obtained from the 
training data and the testing data, respectively. The predictions 
obtained by the training data are combined as the training data 
of the secondary classifier. The predictions obtained by the 
testing data are averaged and used as the testing data of the 
secondary classifier. 
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Fig. 2.   The schematic of stacking 

Stacking is essentially a layered structure that is very 
similar to the neural network. The effectiveness of stacking 
mainly comes from feature extraction. Different classifiers 
express the representation of different features through 
heterogeneity. Therefore, stacking means that the learning 
ability is not due to the effect of multi-layer stacking, but due 
to the learning ability of different classifiers for different 
features. Stacking achieves superior performance by 
effectively combining different classifiers. However, with the 
increase of the number of layers, stacking faces a serious over-
fitting risk, so stacking generally only uses two layers. 

IV. RESULTS 
In this study, eighty percent of the data set is used as the 

training set (23040×137) and the rest as the testing set 
(5760×137). The sample sequence of the data set has been 
scrambled before being split.  

We set the number of hidden layers in SDAE to 2. By 
changing the number of first hidden layer neurons, we can get 
different training accuracy and testing accuracy, as shown in 
the figure below. The training accuracy and testing accuracy 
respectively represent the correct rate of the trained model to 
predict the training set and the testing set. Where z represents 
the number of second hidden layer neurons and the size of 
batch is 40, learning rate is 1. When the number of first hidden 

layer neurons is 110 and z=20, the network has the best 
training and testing accuracy, which are 0.9220 and 0.8158. 

 KNN can be obtained with different test accuracy by 
adjusting the k value. We choose the value from 1 to 30 for 
training, and the testing accuracy is best when k=20. The best 
testing accuracy is 0.7658. 

 
 

 
Fig. 3a.   The training performance of different hidden layer neurons in SDAE 
 
 
 

 
Fig. 3b.   The testing performance of different hidden layer neurons in SDAE  

 
 
 

 
Fig. 3c.   The testing performance of different k value in KNN  

 
 
 
 



We select SDAE as the base classifier and KNN as the 
secondary classifier in stacking. Then we compare the results 
with SDAE and KNN, and also compare it with some 
mainstream classification algorithms. 

TABLE I.  COMPARISON OF SDAE AND KNN  

 Training 
accuracy 

Testing 
accuracy 

Training  
time 

SDAE 0.9220 0.8158 0.4827(s) 

KNN 0.7916 0.7658 108.6870(s) 

Stacking of 
SDAE and 

KNN 
0.7882 0.8247 15.1286(s) 

 

TABLE II.  COMPARISON OF MAINSTREAM ALGORITHMS 

 Training 
accuracy 

Testing 
accuracy 

Naive Bayes 0.6978 0.6977 

Logistic 
regression 0.7812 0.7828 

Extreme 
learning 
machine 

0.8256 0.7724 

Discriminant 
analysis 
classifier 

0.7694 0.7677 

Stacking of 
SDAE and 

KNN 
0.7882 0.8247 

 
It can be concluded from the table that some training data 

is lost by the stacking method, so the training accuracy is 
reduced, but in exchange for higher testing accuracy. In 
comparison with mainstream algorithms, the new model also 
shows relatively good training accuracy and best testing 
accuracy. 

 

V. CONCLUSIONS 
In this study, we proposed a new fusion model by stacking 

two existing classifiers. Among them, SDAE is used as the 
base classifier and KNN is used as the secondary classifier. In 
identifying EEG-based MW levels classification work, the 
new model demonstrates further improved testing accuracy. 
Stacking avoids data overfitting through k-fold cross-
validation, but this results in fewer training set samples for a 
single training session. We also found that for classifiers like 
KNN that require more training time, stacking can be used to 
effectively reduce its time. However, the improvement in 
training accuracy is not obvious enough even compared to 

SDAE and KNN. In future work we will try more models as 
base classifiers and construct their predictions into 
multidimensional matrices to provide training to the secondary 
classifier. 
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