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Abstract—Multi-scale coherent dynamics of effectuation in a
holistic functional structure designed for autonomous pursuit of
missions compliant with mainly anticipated functional challenges
were described axiomatically, recently. Here, the theory is car-
ried forward to permit functional development in the sense of
progressive adjustment of functional capacities in unforeseen sce-
narios. Potential applications are highly adaptable living systems
and those automated engineered system, machinery (robots) or
computer code (cyber-systems), that can expand autonomously, on
self-registered demand. In a hierarchical structure and multi-scale
coherence, even simple generic three-compartment first-order ki-
netics permit a cellular complexity that admits highest degrees of
functional diversity, if needed.

Index Terms—holistic design process, cellular complexity, ax-
iomatic effectuation, production systems, first-order dynamics,
intensity function

I. INTRODUCTION

Recent theory of dynamics of effectuation in complex struc-
tures was motivated by a purely functional view of whole
human-body system [1], [2]; its main features are briefly char-
acterized first, followed by motivation and plain explanation in
turn.

A holistic approach with simultaneous integration of all
functional levels yields substantial added value like well-done
architecture of a building, for example, though modular assem-
blance is widely practiced in engineered systems. The first step
in a holistic design process is identification of design motifs, the
second is functional design with separation of material from
organization, and the final third step is a review of applicable
design principles within material resource specifications or
limitations.

The merits of an axiomatic approach are known from thermo-
dynamics and probability theory, cf. [3] for a recent review and
[4], respectively: abstract properties of phenomena, e.g. temper-
ature and probability, can be postulated in mathematical form
and implications be obtained for comparison with experimental
outcomes, or for prediction, all despite uncertain, incomplete,
or inaccessible knowledge about underlying basic mechanisms
from which said phenomena emerge.

Multi-scale coherence gives re-assurance that lower-scale
properties, e.g. dynamics, translate to upper-scale properties, or
vice versa, the latter can be interpreted as the former. This is
particularly useful in structures that span many scale levels: by
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”inductive knitting”, it will suffice to demonstrate this property
for a one-step up-scaling.

System Functional Architecture [2] – to be described in the
next Section – implies a hierarchical structure of functional
scale levels as well as a delegation of all physical properties to
a base level, as done in “layer” concepts of computer System
Network Architecture and comparable design standards [5].
It is the necessary environment for a holistic and multi-scale
coherent axiomatic theory.

Design motifs of living nature and engineered systems can be
quite similar, as suggested in the subtitle of Norbert Wiener’s
seminal work on cybernetics [6], control and communication in
the animal and the machine, and already earlier by Fritz Kahn,
a German medical doctor, who illustrated human-body physi-
ology as a factory in art-work for lay press, first in Germany in
the 1920’s and later in New York [7]: man and machine share
in being made for purpose – production of some kind – but
differ in purpose. While the animals are made for reproduction
and must fight through their life to make their living by relying
only on their own resources to take advantage of opportunities
within their habitual environment and their range of operations,
the machines more comfortably enjoy a human hand to fill up
resources, to guide and maintain them. As for design-phase
specification of abilities, closer analogy is then seen between
machine and domesticated animals, while design specifications
for human-body system are “to be fitted and witted” for wildlife
– as any other living creature –, more or less modulated by
cultural consensus in prevailing social settings.

Technically, human-body system is an autonomously acting
bio-reactor, non-autarkic as it is vitally dependent on uninter-
rupted oxygen-logistics for permanent combustion of ingested
nutrients to keep its 1014 body cells alive. This cellular system
is living-nature’s sole material option – and in this role com-
parable to metal, plastics, stone or wood that engineers use in
fabrication of their machines and buildings. Accordingly, de-
sign principles of living nature will be fundamentally different.

A recent mathematical theory [1] elaborated on separation
of function from material for a holistic view of dynamics by
‘functional drill-down’, layer by layer, from behavior of phys-
ical Whole to base functions. In Sect. II, this purely axiomatic
approach of successive (upwards) aggregation of smaller func-
tionally cooperating units into larger ensembles and translation
of their dynamics from units to ensembles is recapulated from
[2], though stripped to the currently most general representation



by integrated intensity functions and expanded for a mechanism
of autonomous functional learning, rooted in rhythms that arise
from capacity tailored to mainly low-profile demand and is
to be seen as a design principle of living nature in order to
economize on its resources.

Learning is a core requirement to remain “fitted and witted”
for self-sustained life, as living nature does not provide the
learned competence to meet life’s challenges, only a genetic
recipe. Learning for wits starts from functional activity and is
triggered by volition to overcome a met functional deficit, in
order to fulfill a task, to pursue in a mission, or to satisfy an
ambition: learning just for no purpose is not an option in living
nature, and not in engineered systems made for a purpose,
either. And, learning is tied to a functional option, as horses will
never swim like fish, much less fly like bird; it then becomes an
issue of expanding an available capacity currently too low for
one’s intention.

Engineering design that copies living nature seems particu-
larly promising when performance in labor must be adapted to
highly variable demand, for example, equally permit very high
performance for a short while, as seen in sprinting athletes, as
well as lasting elevated performance for a long while, as seen in
marathon runners. The living’s rhythm of labor and restoration
is a distinct design principle worth to consider for engineered
systems that are designed for a widely unspecified, though not
unrestricted, range of operational options in limited resources –
similar to human-body system, then.

II. GENERIC DYNAMICS

A. System Functional Architecture

Consider a functional system(FS) that permits a complete
functional description in terms of functional units(FU) which
combine by joint functional assignment in functional aggre-
gates(FA) that are aggregated again, with other FA’s to a more
comprehensively composed FA, etc. Such successive aggrega-
tion of functional units generates, step by step of aggregation,
distinct functional levels(FL) of increasing comprehensiveness
and complexity of functionality; it implies an up-wards em-
bedding of all FU’s into some FA which then emerge as an
FU for next-step aggregation thus generating a strict functional
hierarchy that stops with the final FA, the anatomical Whole.
This kind of built-up is called System Functional Architecture,
when material realization can be delegated completely to a base
layer of physical interpretation. It applies with living nature’s
cellular systems to a holistic functional view of human-body
system, for example, and shows a close analogy with standard
six or seven layers structure of System Network Architecture
for distributed computer systems and its base physical layer [5].

B. First-order Kinetics

Consider a logistic supply-chain of some kind of goods from
an inexhaustible source (a “factory”) via a hub (a “retailer”)
to an end-consumer. It can be helpful to adopt some terminol-
ogy of direct-current electric circuits, though no specific real-
world physical interpretation is assumed: the setting is strictly
axiomatic as in [1].

Have a permanent driving force at a ubiquitous source and
think of a constant potential difference as a voltage, U0 > 0,
say. Have the hub’s input and output then as a supply-part con-
denser of capacityCs and a demand-part condenser of capacity
Cd, respectively, and assume matching sizes, Cs = Cd = C
with 0 < C <∞.

Denote total charge transferred from source to supply-part
condenser during t time units by Qs(t) ; denote total charge
available for discharge from demand-part condenser at time
t by Qc(t). Note that in the demand-part, different from the
supply-part, the driving force is the potential difference from
t-prevalent charge Qc(t), in other words: charge available for
transfer is the acting force for discharge while actual release
of charge from hub in the demand-part will depend on end-
consumer’s demand.

First significant results can now be obtained from intuitive
assumptions about charge transfer dynamics that are based on
residual charging and residual discharging, i.e. either for com-
pletely charging the supply-part condenser or for completely
discharging the demand-part condenser. Denote the t-current
residual charge necessary to reach full charge Qs,max = U0C
on the supply-part condenser by

Qs,res(t) = Qs,max −Qs(t), t ≥ 0, (1)

and the t-current residual charge on the demand-part condenser
by Qd,res(t) as Qd,res(t) = Qc(t).

Supply-part charge increments dQs(t) and demand-part
charge decrements – or synonymously discharge increments –
dQc(t) are each proportional to the pertinent t-current residual
charges “due for transfer”, Qs,res(t) and Qd,res(t) = Qc(t),
respectively. The “proportionality factors” can be taken as quite
general constructs such that it will permit the introduction of
various influencing factors into the dynamic equation.

Proposition 1: Functions Qs and Qc can then be assumed
to permit factorizations of their increments on any arbitrarily
interval ]t, t + dt] with some non-decreasing positive real-
valued differentiable functions, Λs = (Λs(t))t>0 and Λd =
(Λd(t))t>0, respectively,

dQs(t) = dΛs(t)Qs,res(t) (2)

and
dQc(t) = −dΛc(t)Qc(t) (3)

Proof: In fact, let qs,res(t) and qc(t) denote the rela-
tive charges to supply- and from demand-part condensers,
respectively, qs,res(t) = 1 − Qs(t)/Qs,max and qc(t) =
Qc(t)/Qc,max. Then, 0 ≤ qs,res(t) ≤ 1 and 0 ≤ qc(t) ≤ 1 are
both monotonically decreasing functions and differentiable in
t, with q̇s,res(t) = −Q̇s(t)/Qs,max and q̇c(t) = Q̇c(t)/Qc,max.
The proposition then follows from choosing

Λs(t)
def
= − log qs,res(t) (4)

Λc(t)
def
= − log qc(t) (5)

Note that cumulative intensity functions Λs and Λc are di-
mensionless, irrespective of metric dimensions of charges Q.



These functions permit uniquely defined – up to a constant
– representations of their differentials, dΛs(t) = λs(t)dt
and dΛc(t) = λc(t)dt, with λs, λc positive real functions,
called (charge-transfer) intensities of charging and discharging
condensers, respectively. In reliability analysis, intensities are
used to include additional factors that are involved in transfer
dynamics. Let z be a vector of such covariates, then

dΛs(t; z) = λs(t; z)dt (6)

and

dΛc(t; z) = λc(t; z)dt (7)

introduce z into equations (2) and (3), respectively.

C. Generation of Rhythms

Rhythms arise with faster-than-average release, slower-than-
demand refill of reservoirs sized for average consumption-rates
– similarly seen with pork-price cycles in economic markets,
and measles epidemics in unvaccinated populations. Consider
a 24-h power profile as in Fig. 1 with 65kcal/h for a 70kg
man in sleep-phase minimum that sustains vital physiologi-
cal function (low breathing, lying flat with little movement,
calm brain activity) while filling up “functional reservoirs”, i.e.
condensers, within 8h as an example of slow refill for whole
human-body system. For fast-release then, consider an athlete
who runs 100m in 10s, but at most once a day, and sits with
close to minimal wake-phase resting power of 100kcal/h for a
while until the energy for moderately normal wake-labor, e.g.
200kcal/h “walking slowly (2.6 miles per hour)”, returns from
concurrent supply (specific data from a standard physiology
textbook [8]).

Fig. 1. A person’s schematic 24h energy consumption rate (power) profile
(unscaled, vertical axis for kcal/h omitted) around noon time, with “eat” for
meals including light activity of daily living, and finite slopes for preparations
in transition from one kind of activity to the next (from [2]).

The reason for rhythms in the living rests in its design
motifs: for engineered systems, average performance is taken
to balance with energy supply from a reservoir for the ex-
pected duration of mission, and above-mentioned rhythms are
as undesirable as a spluttering engine. Living systems’ energy
reservoirs will also be sized for average demand, but have an
ability for extremely fast release in order to survive in response
to sudden vital threats. This will be exploited for functional
learning.

III. GENERIC FUNCTIONAL LEARNING

Understand functional learning as expansion of capacity
of a functional unit, specifically the capacity C of the unit’s
mirrored supply- and demand-part condensers. Learning is then
seen as training for higher performance in some functional fea-
ture, and shall then emerge from repeated functional challeng-
ing. This fits into the present mathematical setting, since levels
of available charge Qc(t) on the demand-part condenser gener-
ate the driving force for charge transfers to the end-consumer
by Uc(t) = Qc(t)/C, and then translate into end-consumer’s
performance in terms of power; hence, enlarged capacity C in
all desirable functionalities is necessary. Note, that larger levels
of capacity C imply larger levels of Qs,max = U0C and be
reminded that Qc,max = Qs,max because of “mirroring”.

One first has to digress from the time scale of 24-hours in
wake-sleep cycles to the coarser scale of whole days, which
may again be taken as practically continuous when observing
that one year of life has 365.25 days on average. Denote time
in days by τ , then, and consider days at which exhaustive dis-
charges from ε-almost maximum levels of charge available for
transfer occur; assume that permissible discharge would come
to a halt before reaching destructive levels of Qc(t) < Qc,min

on the demand-part condenser. Define size of an ε-exhaustive
discharge Qc,max,ε then by

Qc,max,ε + ε = Qc,max −Qc,min , (8)

for some small value of ε > 0. Any occurrence of an ε-
exhaustive discharge is considered as a functional challenge.

Definition 1: [Functional Challenge] A capacity-enhancing
functional challenge (CEFC) on the demand-part condenser
occurs with an ε-exhaustive discharge in a very small time
interval, in other words, there is some tc, 0 < tc < tmax, such
thatQc,max−ε ≤ Qc(tc) ≤ Qc,max andQc(tc+dt) = Qc,min,
equivalently,

dQc(tc) = Qc,max,ε ; (9)

note that an ε-exhaustive discharge may occur at most once a
day, when ε is sufficiently small and restoration to full charge
levels needs a phase of ”restorative sleep”.

LetD(τ) denote the indicator of occurrence of a CEFC event
during day τ ,

D(τ) =

{
1 : ∃t ∈ τ : dQc(tc) = dQc,max

0 : ∀t ∈ τ : dQc(tc) 6= dQc,max
(10)

Denote the point-function of occurrences of CEFC events in
τ -time by function D = (D(τ))0<τ<τmax : for any 0 < τ <
τmax, τ is an occurrence time of CEFC, if and only ifD(τ) = 1.
Denote the ordered sequence of occurrence times by

0 = τ0 < τ1 < τ2 < . . . < τk < τk+1 < . . . (11)

The associated counting function of occurrences of CEFC
events in τ -time,

ND(τ) =
∑
τi≤τ

D(τi) , (12)



is a positive and increasing step function with jumps of size 1 at
exactly the times in (11), right-continuous with left-hand limits
(“cadlag”), and bounded on any finite τ -interval.

Consider the normalized Gamma function F (τ ;α, β) in
τ , with integer α > 0 and real β > 0 as parameters,
limτ→∞ F (τ ;α, β) = 1, [9]

F (τ ;α, β) =

∫ τ

0

1

α!β

(
u

β

)α
e−

u
β du ; (13)

it approximates integrals of bell-shaped Gaussian densities for
integer α ≥ 3 and real β = 1, cf. [9].

Definition 2: [Multi-hit Enhancement] A stress-induced en-
hancement of functional capacity from baseline C(0) = C to
C(τ) in τ units of τ -time is then obtained from

C(τ) = C(0) [1 + F (τ ;α, β)] , (14)

for choices of parameters according to a preferred rate of
upgrade. For example, α = 3 and β = 1 will imply largest
rates around τ = 3, that can be used to set an adequate training
rhythm.

For motivation, function (13) is a multi-hit model

F (τ ;α, β) =
∑
l>α

(
τ
β

)l
l!

e−
τ
β (15)

with more than α hits required to generate a response, when
expected number of hits in ]0, τ ] is τ/β.

IV. FUNCTIONAL LEARNING IN SYSTEM FUNCTIONAL
ARCHITECTURE

A. Up-scaling First-order Kinetics

Suppose generic functional first-order kinetics as in (2) and
(3) for every functional unit FU at every functional level FL; for
some fixed level FLk, k > 1, say, consider m functional units
FUi, i = 1, . . . ,m, to form a functional aggregate FA,

FA = {FU1, . . . ,FUm} , (16)

then. Counting functional levels from top to bottom, with FL0
for the Whole, FA of FLk emerges as some functional unit FU
of FL(k − 1), in an intuitive notation,

FAFLk = FUFL(k−1) , (17)

for all levels k > 1. It will then suffice to translate m
individual generic first-order kinetics of elements of FAFLk

into one for the aggregate. The mechanism – denominated as
a ’wirkgefuege’ for short, instead of a clumsier ’structure that
generates an effect’ or ’structure of effectuation’ – by which this
can be achieved is a postulate, axiomatic then, without realistic
physical interpretation as a model, though admittedly inspired
by electric direct-current circuits in a parallel connection.

Definition 3: [Axiomatic Wirkgefuege [1]] If generic first-
order kinetics of FA = {FU1, . . . ,FUm} arise from those

of individual FUi, i = 1, . . . ,m, by summing respective
capacities and charges in supply-parts and demand-parts,

CFA
s =

∑
FU∈FA

CFU
s , (18)

CFA
d =

∑
FU∈FA

CFU
d , (19)

QFA
s (t) =

∑
FU∈FA

QFU
s (t) , (20)

QFA
d (t) =

∑
FU∈FA

QFU
d (t) , (21)

for all functional levels FLk, k > 1, in a given System
Functional Architecture, then this set of equations constitutes
an axiomatic wirkgefuege.

One next has to show that generic dynamics of Eqs. (2) and
(3) in Section II, active within each element of a FLk functional
aggregate, actually translate to those of a functional unit at
FL(k − 1), in the sense of (17).

Lemma 1: [Supply-part Intensities] Consider Λs(t) as in
Proposition 1 for FA as in (16), then

dΛFA
s (t) =

∑
FU∈FA

dΛFU
s (t)

CFU

CFA
s

(22)

Proof:∑
FU∈FA

[
U0C

FU
s −QFU

s (t)
]

dΛFU
s (t) =

∑
FU∈FA

dQFU
s (t)

(23)
and by (20), the right-hand side equals dQFA

s (t) with its analo-
gous representation

dQFA
s (t) =

[
U0C

FA
s −QFA

s (t)
]

dΛFA
s (t) ; (24)

the terms in square brackets represent the residual charges for
transfer to respective supply-part condensers. As all supply-part
condensers are assumed to be in a parallel connection, equal
potential differences cancel out,

QFU
s,res(t)

QFA
s,res(t)

=
CFU
s

CFA
s

(25)

Lemma 2: [Demand-part Intensities] Consider Λc(t) as in
Proposition 1 for FA as in (16), then

dΛFA
c (t) =

∑
FU∈FA

dΛFU
c (t)

CFU
d

CFA
d

(26)

Proof: Replace Cs with Cd; assume that all demand-part
condensers are in a parallel connection and then use

QFU
c (t)

QFA
c (t)

=
CFU
d

CFA
d

, (27)

the proof is along the same lines as for Lemma 1.
Up-scaled intensities of charge transfers at functional level

FL(k − 1) are then capacity-weighted sums of intensities of
next-lower functional level FLk, which reflects the ”knitting”.



B. Up-scaling Functional Learning

Generic functional learning was based on repeated oc-
curences of demand-part condenser’s rapid discharge down to
critical levels, called functional challenges. In a System Func-
tional Architecture with its sequence of functional levels, FLk,
k = 0, 1, . . . , expanded capacities of lower-level functional
units can only affect capacities of upper-level functional units
when embedded via functional aggregation, as seen by Eqs.
(18) and (19).

Then, expanded functional capacities from lower functional
levels translate into functional capacities at upper functional
levels, but effects get ’diluted’ from other functional units’
unchanged capacities, the higher one follows the expanded
capacity up:

CFU
s (τ)

CFA
s (τ)

= (28)

CFUi
s (τ)

CFU1
s (0)+···+C

FUi−1
s (0)+C

FUi
s (τ)+C

FUi+1
s (0)+···+CFUm

s (0)

For illustration, training of a single muscle will not make a
champion. This inconspicuous remark points top-down: define
the capacity goal – as well as limits – of functional Whole, the
single FU at FL0, understand it as a functional aggregate in
the sense of (17) with k = 1, and find its level FL1 functional
units as in (16); for example, an athlete will focus on physical
functions, a chess-champion on cognitive functions.

In further drill-down, FL1 components in human-body sys-
tem are interpreted as aggregates and decomposed into their re-
spective functional units of FL2, as suggested for vital functions
in [10], [11] – leading to a preliminarily suggested “factory
model” in the spirit of [7]. Similar decompositions of two
further FL1 components, productivity functions and operational
functions, into their respective FL2 functional units have to be
found, still.

V. DISCUSSION

The present approach is a mathematically phrased abstract
theory of learning based upon and designed for functional
dynamics within hierachical structures of effectuation; though
inspired by observation of biology of human body system, it
is not modeling the neurobiology of human learning, as other
nominally related dynamic systems approaches successfully do
[12], and it may have wider applications. It is then axiomatic by
intent.

Functional learning in the present theoretical set-up is about
functional task-solving capacity-enhancement. For example, a
town map will be very useful to prepare a trip, while functional
learning is about finding one’s way in city streets - even without
a street map. Functional learning is not watching how to do
things, nor is it taking up abstract knowledge, or theory in
education, as this can provide only concepts that have to be
translated for implementation into an intended action. It is then
kind of “learning by doing”.

Learning because of “met functional deficit” needs an op-
erational understanding of “functional deficit” as a hindrance

in pursuit of a path of action; when hindered by a wall, one
solution may be to climb the wall and to upgrade one’s physical
abilities first, another option may be to find a way around
the wall by reconnoitering, upgrading one’s cognitive ability.
However, the present approach can not provide solutions as how
to climb the wall, or how to find one’s way in city streets, as said
dynamic systems approaches to development of cognition and
action [12] do.

Dropping the qualification as “functional”, “met deficits”
have a wider interpretation as a discrepancy between observa-
tion and expectation, known as innovation in communication
theory and Kalman filtering [13], or as – what I call a paradigm
of empirical research – the comparison of observed (sample
mean) and (probabilistic) expected values (under a hypothesis)
for design of statistical testing methods (then often divided by
the sample standard deviation, of course, to invoke a central
limit theorem in probability theory).

Further, “met deficits” have two commonly experienced in-
terpretations in social life, one as a “surprise”, with discrepan-
cies understood as a nice gesture, for example an unexpected
hand waiving in good-bye, and another as a “disappointment”
in unfriendly actions, unpleasant verbal comments, or failed
dating appointments. Such social learning will then need more
than to understand that a physical wall is too high to jump over,
and autonomously learning machines will have to collect real-
life experience for improved social aptitude and performance
as any human and animal in respective social context. But as
soon as functional units and functional aggregates for oper-
ational activity in social interaction are identified, the same
“mechanics” of functional learning become applicable, again.
(Note that “real-life experience” may not match “digital-life ex-
perience”, implying that feeding a thesaurus of social scenarios
into computer memory may not yield desirable levels of social
competence.)

This understanding of social learning does not involve coping
with “disappointment”, or any physico-chemical processes in
human-body system’s psychophysical response to impact from
physical body’s outside world. The functional viewpoint takes
social learning as a process of receiving signals, interpreting the
information, deciding on how to re-act, enacting the decision,
observing the outcome and then comparing observed outcome
to the one expected in order to obtain the ‘innovation’ necessary
for further improvement. It is then amenable to the present
theory as soon as respective functional units and aggregates
have been defined.

Similarly designed for purposeful action are a wide range of
tactical units of engineered machinery with human operators,
e.g. an excavator at work, a cruising ship with captain, or
an aircraft with pilot in flight. Productive systems by design,
engineered or by evolution, share a canonical functional de-
composition of their anatomical Whole into the three “wirk-
components” of vital functions, productivity functions, and
operational functions that interactively cooperate [1],[14]. At
any moment, interaction between these three high-end wirk-
components emerges as Whole’s currently visible behavioral
activity – modulated according to functional limitations or en-



hancements, if any, that might have occurred within each of the
high-end components at much lower functional levels and that
could still make their way up, diluted or strengthened when not
neutralized in translation of functional dynamics by successive
aggregation through all up-wards levels, as it is visible in (28).

Though systems differ substantially in mission, design, and
material realization for a designated environment, effectuation
dynamics characterized by intensity functions with their trans-
lations apply throughout and across all levels in functional up-
scaling or down-scaling within a system. However, effects of
an expanded – or a shrinking, for that purpose – capacity can
be followed only upwards from the functional level at which
they occur, notwithstandingly.

As three technical points to make,
• the immediate release (9) adopted for “upgrading me-

chanics” can be spread out to a short interval during the
day; it was chosen for convenience in the present setting
of infinitesimal time steps which permits formulation of
growing, or shrinking, without interference from control
regimens, because coordination is considered to be inde-
pendent of size of capacity in infinitesimally small time
steps, and

• in human-body system during child development to adult-
hood, also capacities of vital functions (lung, cardio-
vascular logistics, digestive systems, nervous system) are
expanded, parallel to growth of osseous structures, by ge-
netic programs though possibly also by an implied demand
for matching the sizes in making the Whole.

• By the generality of “charges”, a remark on identification
and estimation of charge-transfer dynamics is mandated:
suggestion is to consider implied charge-transfer work [2]
as this was seen not to change the intensity functions that
characterize dynamics. For application, ability to measure
energy consumption will be the main issue, then.

An additional remark, requested by a reviewer, shall ex-
plain the setting of System Functional Architecture in slightly
different words: Starting from top, “whole” is a logical cell,
and also a functional aggregate – logical tissue, then – of
logical cells, and interaction of the latter generates dynamics
of “whole”. With increasing granularity, this is repeated in suc-
cessive decomposition: each logical cell is next-level’s logical
tissue composed of that level’s functional units as applicable,
and again, logical tissue’s dynamics arise with interaction of its
logical cells’ dynamics. Respective cell dynamics translate to
tissue dynamics in simple direct ways as stated in the Lemmata
1 and 2, though such simplicity may be deceptive as it will only

apply within any infinitesimally short time interval of length
dt, and the contributions of each functional unit within its
functional aggregate during any larger time interval may vary
considerable in order to produce a specific pattern of activity
of the aggregate. Embedding simple cellular dynamics in such
hierarchical complexity was chosen to avoid what may oth-
erwise grow into a nightmare of higher order kinetics across
several scale levels. When to be used as a model for even the
simplest kind of realistic behavior, an appropriate management
and control regimen must be added, first.
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