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Abstract—Novel computing hardwares are necessary to keep
up with today’s increasing demand for data storage and pro-
cessing power. In this research project, we turn to the brain
for inspiration to develop novel computing substrates that are
self-learning, scalable, energy-efficient, and fault-tolerant. The
overarching aim of this work is to develop computational models
that are able to reproduce target behaviors observed in in vitro
neuronal networks. These models will be ultimately be used to
aid in the realization of these behaviors in a more engineerable
substrate: an array of nanomagnets. The target behaviors will
be identified by analyzing electrophysiological recordings of the
neuronal networks. Preliminary analysis has been performed
to identify when a network is in a critical state based on the
size distribution of network-wide avalanches of activity, and the
results of this analysis are reported here. This classification of
critical versus non-critical networks is valuable in identifying
networks that can be expected to perform well on computational
tasks, as criticality is widely considered to be the state in which
a system is best suited for computation. This type of analysis
is expected to enable the identification of networks that are
well-suited for computation and the classification of networks
as perturbed or healthy.

I. INTRODUCTION

Current computing technology is based on the von Neu-
mann architecture, in which tasks are performed sequentially
and control, processing, and memory are each allocated to
structurally distinct components. With this architecture, con-
ventional computers struggle to cope with the rising demand
for data processing and storage. Furthermore, although recent
advancements in machine learning technology have conferred
great advantages to our data handling capabilities, processing
continues to be performed on conventional hardware that
has no inherent learning capabilities and thus requires huge
amounts of training data, computational time, and computing
power.

To continue to fulfill the rapidly growing computing de-
mands of the modern day, it will be necessary to develop
novel physical computing architectures that are self-learning,
scalable, energy-efficient, and fault-tolerant. The use of self-
organizing substrates showing an inherent capacity for infor-
mation transmission, storage, and modification [1] would bring

computation into the physical domain, enabling improved
efficiency through the direct exploitation of material and
physical processes for computation [2, 3]. Some key properties
of self-organizing systems that make them well-suited for
computational tasks include their lack of centralized control
and their adaptive response to changes in their environment
[4]. Such systems are composed of many autonomous units
that interact with each other and the environment through a set
of local rules to give rise to organized emergent behaviors at a
macroscopic scale. This type of spontaneous pattern formation
is fairly common in nature, and there has been recent interest
in determining how to develop interaction rules to generate
various desired emergent behaviors [5], including those geared
toward computation. In addition, it has been demonstrated
that self-organizing substrates can be used as computational
reservoirs by training a readout layer to map the output of the
physical system to a target problem [6].

The brain is an excellent example of a self-organizing
system; it shows a remarkable capacity for computation with
very little energy consumption and no centralized control, and
scientists and engineers have long looked to the structure and
behavior of the brain for inspiration. Neurons grown in vitro
self-organize into networks that show complex patterns of
spiking activity, which can be analyzed to gain insight into the
network’s capacity for information storage and transmission.
This behavior indicates that in vitro neuronal networks may
serve as a suitable computational reservoir [7] and could also
provide insights into the characteristics and dynamics desired
for more engineerable substrates.

The aim of the present research project is to construct
computational models that are able to reproduce desired be-
haviors observed in electrophysiological data recorded from
engineered neuronal networks. These models will provide
insight into the behavior of the neurons and enable us to
reproduce it in other substrates. The computational capabilities
of the models and different physical substrates developed from
the models will be explored and their dynamics characterized.
This work is part of a project entitled Self-Organizing Com-
putational substRATES (SOCRATES) [8], which aims to take



inspiration from the behavior of in vitro neuronal networks
toward the development of novel self-organizing computing
hardwares based in nanomagnetic substrates.

In addition to providing an avenue for the development of
novel computational hardwares, the developed models are also
expected to provide insight into the functionality of neuronal
networks in healthy and perturbed conditions, where typi-
cal perturbations include chemical manipulation or electrical
stimulation. The dynamics of perturbed neuronal networks
will also be modeled using the developed framework and
their computational capabilities and dynamics characterized.
On the basis of this modeling, strategies of interfacing with
perturbed networks to recover their dynamics will be explored.
The behavior of perturbed networks and their capacity for
recovery will also provide insight into the robustness of
the computational capabilities of engineered self-organizing
substrates against analogous damage or perturbation.

The remainder of this paper is organized as follows. Section
II presents an analysis method that will be used in this research
project to assess the criticality of in vitro neuronal networks
toward identifying networks that may be considered well-
suited for computation. Results from the preliminary analysis
of electrophysiological data recorded from a neuronal network
cultured on a microelectrode array (MEA) are presented and
discussed in this section. A brief overview of the long-term
plan for this research project is then given in Section III.
Section IV concludes the paper.

II. NEURONAL AVALANCHE ANALYSIS

A. Background

An analysis method based on the size distribution of neu-
ronal avalanches was applied to the analysis of an in vitro
neuronal network in this study (see Fig. 1a for an example of
such an in vitro network); this method is based on previous
analysis performed on cortical networks [9, 10]. The aim of
this method is to determine whether a given neuronal network
is in the critical state, which is presumed to be beneficial
for the network in terms of its capacity to store information
and perform computation. A system in the critical state rests
at the boundary between two qualitatively different types of
behavior. In the subcritical phase, a system shows highly
ordered behavior characterized as static or oscillating between
very few distinct states, whereas in the supercritical or chaotic
phase, the system shows highly unpredictable, essentially
random behavior. Near the transition point between these two
regimes, the system is poised to effectively respond to a wide
range of inputs as well as store and transmit information,
making it ideal in terms of the capacity a system has for
computation [1].

It has been proposed that the brain self-organizes into a
critical state to optimize its computational properties; the
foundations and theorized functional benefits of this behavior
have been reviewed in recent articles [11, 12]. As first defined
by Beggs and Plenz [13], a neuronal avalanche is any number
of consecutive time bins in which at least one spike is
recorded, bounded before and after by time bins containing

(a)

(b)

Fig. 1: (a) Microscope image of a neuronal network cultured
on an MEA for illustrative purposes. Image taken by Ola
Huse Ramstad. (b) Definition of a neuronal avalanche. Each
dot represents a spike recorded by one of the electrodes (Ch.
1–4). A time bin is active when it contains at least one
spike and empty when there are no spikes. An avalanche is
defined as a sequence of consecutive active time bins preceded
and followed by empty bins, and the size is the number of
electrodes active during the avalanche.

no activity, as shown in Fig. 1b. In their study, Beggs and
Plenz [13] demonstrated that the size and duration of neuronal
avalanches follows a power law, indicating that the propagation
of activity in the cortex is in the critical state [14]. It has been
further demonstrated that criticality is established by a balance
between excitation and inhibition and that cortical networks
at criticality show greater dynamic range and information
capacity and transmission than networks functioning outside
of criticality [15, 16]. Studies on the spontaneous activity
of dissociated cortical networks have indicated that these
networks tend to self-organize into the critical state over
the course of their maturation, after first showing an early
subcritical followed by an intermediate supercritical phase
[17, 18].

As a long-term goal of the present research project,
avalanche size distribution analysis will be applied to record-
ings obtained from different in vitro neuronal networks to
assess the criticality of the networks. Emerging network dy-
namics in healthy and perturbed conditions will be studied,
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characterized, and classified. In the preliminary results pre-
sented here, the development of a single unperturbed neuronal
network as it matures is reported.

To the authors’ knowledge, this work represents the first
time avalanche analysis has been applied to neurons derived
from human induced pluripotent stem cells (iPSCs). Further-
more, this type of analysis has also not yet been applied to the
characterization of the neuronal network dynamics in in vitro
disease models, which will be the focus of future work.

B. Methods

The neuronal network assessed here was prepared as fol-
lows. Human iPSCs (ChiPSC18, Takara Bioscience) were
reprogrammed using a protocol for midbrain dopaminergic
neurons adapted from previous studies [19–21]. Reprogram-
ming was concluded on day 16, at which point the cells were
left to mature. The spontaneous electrophysiological activity of
the network was recorded using a 60-electrode MEA together
with the corresponding in vitro recording system (MEA2100-
System, Multi Channel Systems) and software (Multi Channel
Experimenter, Multi Channel Systems). Recordings of 6 min
were taken starting after three weeks of maturation (day in
vitro (DIV) 21), starting from the date at which the repro-
gramming was concluded, and a total of 18 recordings taken
over the period from DIV 21 to DIV 56 were analyzed.

Avalanches were detected according to the method de-
scribed by Beggs and Plenz [13]. Briefly, events were detected
using thresholding on the data after applying a bandpass filter
with a pass band of 300 Hz to 3 kHz 1. The spikes were then
binned into time bins equal to the average inter-event interval
(IEI), which is the time between events recorded across all
electrodes, and avalanches were detected as any number of
consecutive active time bins (bins containing at least one spike)
bounded before and after by empty time bins. The size of an
avalanche is defined as the number of electrodes that were
active during the avalanche.

A power law was then fitted to the avalanche size distri-
bution data using a least-squares fitting followed by nonlinear
regression with the result from the least-squares fitting for the
initial parameter values. This power law takes the form

P (s) ∝ s−α, (1)

where s is the avalanche size, P (s) is the probability of an
avalanche having size s, and α is the power of the fitted power
law. The fit was applied over the size range of s = 2 to 59
electrodes, following previous works [9, 10]. The goodness
of fit was computed following Clauset et al. [22]. Synthetic
datasets were generated from the fitted distribution, and their
Kolmogorov–Smirnov (KS) distances from the theoretical dis-
tribution were compared to the empirical KS distance. The
fitting was rejected if the fraction p of synthetic KS distances

1Code for spike detection is available at https://github.com/SocratesNFR/
MCSspikedetection.

that were greater than the empirical KS distance was less than
0.1 (p < 0.1) 2.

C. Results and discussion

The neuronal avalanche size distribution of a single in vitro
neuronal network was observed as the network matured. In
this preliminary work, no rigorous analysis was yet applied
to classify network as super- or subcritical; rather, only the
goodness of fit of the size distribution to a power law was
evaluated to assess whether the network was in a critical state
during each analyzed recording. Preliminary classification of
non-critical cases was performed by visual inspection.

The fitting results indicate that the network was already be
in the critical state at DIV 21 (Fig. 2a) and remained as such
until DIV 42, with some brief deviations or periods of low
activity. Many of these deviations from criticality were during
the early recording period, and the network was stably in the
critical state between DIVs 36 and 42. The mean power of
the fitted power law distributions in the recordings where the
network was in the critical state was α = 1.84± 0.07, which
is higher than the value of 3/2 reported by Beggs and Plenz
[13]. From DIV 44 until the final recording on DIV 56, the
network was no longer in the critical state, and a preliminary
visual assessment of the avalanche size distributions indicate
that activity progressed to supercritical (Fig. 2b) and finally
subcritical (Fig. 2c) during the later recordings. Supercritical
behavior is characterized by a bimodal distribution, with an
initially low slope in the log–log plot followed by a peak in
the number of larger avalanches, whereas subcritical behavior
is characterized by exponential decay, with few or no large
avalanches; although no fittings were performed to rigorously
assess whether the networks were in either of these states,
the plots in Fig. 2 appear to be consistent with this type of
behavior.

The observed network did not ultimately settle into a critical
state in the considered timeframe, though it did pass through
a period of relatively stable critical behavior. The deviation
from criticality is likely due to the different cell types that
arise during the reprogramming of iPSCs, particularly as the
proliferation of these cells causes the composition of the
culture to change over time. When differentiating iPSCs into a
target cell type, it is impossible to avoid having other types of
cells of the same lineage; for example, glial cells are inevitably
present in iPSC-derived neuronal cultures. This is different
from networks that have been assessed in previous studies on
self-organized criticality in neuronal networks, as these have
focused solely on primary cortical networks, which can be
prepared with greater homogeneity. The heterogeneous and
time-varying cellular composition likely produces changes to
the signalling environment of the neurons, which may tem-
porarily push the network away from criticality. Additionally,
the neurons assessed here were dopaminergic neurons, which
are likely to show a different course of maturation in terms

2Code for avalanche detection and goodness of fit evaluation is available
at https://github.com/SocratesNFR/avalanche.
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(a)

(b)

(c)

Fig. 2: Probability distribution functions for three representa-
tive cases. (a) DIV 21: The fitting indicates the network is
in a critical state, with α = 1.85 (p = 0.13). The power-
law fitting result is shown as a red line. (b) DIV 51: The
network appears to be in a supercritical state with a bimodal
distribution. (c) DIV 52: The network appears to be in a
subcritical state with an exponential distribution. In (b) and (c),
the dashed red lines correspond to α = 1.85 for comparison
with the distribution shown in (a).

of criticality than cortical neurons. It is possible that these
types of networks show more complex oscillatory behaviors
as they mature, or they may eventually settle into a critical
state given enough time. Further work is necessary to capture
the expected time course of the development of the criticality
of such networks.

In future work, this analytical framework will be applied
to recordings from additional unperturbed networks to gain a
better understanding of the typical progression of networks as
they mature in vitro. In cases where the data do not follow

a power law distribution, further analysis will be performed
to classify the state as sub- or supercritical; these cases are
known to show exponential and bimodal size distributions,
respectively, as described previously. This analysis will also
be applied to networks that have been perturbed chemically or
electrically to characterize how their behavior deviates from
that of unperturbed networks and gain insights into how the
perturbation may interrupt normal function.

III. PLAN FOR FUTURE RESEARCH

This work represents a first step in a larger research project,
which will be described briefly here. The plan for this research
project is divided into four stages. In the first stage, a data
analysis framework will be developed, with the avalanche
analysis method described here constituting a crucial part of
this framework. The framework involves methods of extracting
meaningful features from electrophysiological data recorded
from in vitro neuronal networks. Such features include con-
ventional parameters considered in electrophysiological data
analysis, such as the mean firing rate, as well as more complex
measures, such as entropy and measures of connectivity. The
connectivity of the engineered networks will also be modeled
using graph theory approaches. The avalanche method pre-
sented here represents a useful tool for classifying networks
as critical or non-critical. Other methods of classification and
clustering of networks will also be explored.

The second stage of the project involves the construction of
computing models, such as cellular automata (CAs), random
Boolean networks (RBNs), and recurrent neural networks
(RNNs), that show behavior similar to that of the neuronal
networks [23, 24]. The data analysis framework developed in
the first phase will be used as a method of capturing the target
behavior to be reproduced in the models, and this framework
will be continually refined as we improve our understanding
of the important aspects of neuronal behavior that contribute
to their computational capabilities. These computing models
are developed using evolutionary algorithms with appropriate
fitness functions defined on the basis of the target behavior.
Important features of the models, such as their input and output
mappings and number of states, will be explored, and the
dynamics of the models will be characterized.

The third phase involves the use of the developed models
and the in vitro neuronal networks as reservoirs to perform
computational and classification tasks as a proof-of-concept
using reservoir computing. The models from the second stage
will be refined based on their performance as computing
reservoirs.

The final stage consists of the exploration of the application
of the models developed in the second stage to the study
of engineered neuronal networks under perturbed conditions
mimicking pathologies related to the central nervous system
(CNS). Networks that have had their synaptic function per-
turbed will be modeled and analyzed using the developed
methods to characterize how their behavior differs from that
of unperturbed networks. Methods of interfacing with the per-
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turbed networks to restore their dynamics to the unperturbed
state will then be explored.

IV. CONCLUSION

The aim of this research project is to extract meaningful
behaviors and features from electrophysiological data recorded
from in vitro neuronal networks and construct models that
reproduce these behaviors toward the eventual realization of
novel computing substrates based in nanomagnetic materials.
This paper reported the application of an avalanche size
distribution analysis to electrophysiological data, representing
a first step in the development of an analytical framework
to extract target behaviors from such data. The preliminary
results reported here demonstrate emerging behavior that does
not settle into criticality within the investigated time frame;
further work is needed to better characterize the time course
of the development of criticality in the networks studied in this
work and characterize how this affects the network’s suitability
for computation.

With this type of analysis, it can be determined if a network
is in a critical state, which gives an indication of its suitability
for use in computational tasks. In addition to the computational
applications of this analysis, it is also expected to be useful in
distinguishing healthy and perturbed networks and to provide
insight into how different diseases affect neuronal connectivity
and communication, which will be the target of future work.
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