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Abstract—The real-time monitoring of human operator's 
mental workload (MWL) is crucial for development of 
adaptive/intelligent human-machine cooperative systems in 
various safety/mission-critical application fields. Although data-
driven approach has shown promise in MWL recognition, its 
major difficulty lies in how to acquire sufficient labeled data to 
train the model. This paper applies semi-supervised extreme 
learning machine (SS-ELM) to the problem of MWL classification 
based only on a small number of labeled data. The experimental 
data analysis results have shown that the proposed SS-ELM 
paradigm can effectively improve the accuracy and efficiency of 
MWL classification. The proposed semi-supervised learning 
paradigm may provide an alternative data-driven machine 
learning approach to effectively utilize a large number of 
unlabeled data, which can be readily collected under naturalistic 
(operational) task environments in many real-world applications. 
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I. INTRODUCTION 
Automation, automatic control system, and artificial 

intelligence (AI) techniques have been widely applied to 
various fields, but there is still a long way for the current 
development of automation and AI technologies to achieve 
fully-automated control for many real-world complex and 
uncertain systems. In this connection, Human- Machine 
Systems (HMS) are still ubiquitous in practice in most safety-
critical application domains [1]. Compared with machines, 
human operators are more susceptible to external disturbances 
or the impact of their own psychophysiological fluctuations [2]. 
Therefore, it is not surprising that human factors play a 
significant role in the achievement of desired performance of 
HMS. In recent years, researchers from multiple disciplines 
have focused on the research of how to maintain the optimum 
Operator Functional State (OFS) to ensure the successful 
completion of the tasks in the HMS context [3]. 

The operator's mental workload (MWL) is an essential 
dimension of the multi-dimensional construct of OFS. The 

MWL can be considered as a candidate variable for measuring 
mental status of human operator, which reflects the mental 
demand for operators to accomplish the tasks [4]. For operators, 
too high or too low psychological load is detrimental to the 
performance of HMS. In order to mitigate this problem, 
researchers conceived Adaptive Automation (AA) strategy. The 
AA system can adaptively allocate the tasks between operators 
and the machines based on the estimated levels of operators’ 
MWL. MWL measurement/assessment/evaluation approaches 
can be roughly divided into three categories [5]: (1) subjective 
assessment; (2) task performance measures; and (3) 
physiological data based assessment. Compared with the former 
two approaches, the last approach is featured by continuous on-
line measurement. ElectroEncephaloGram (EEG), 
ElectroCardioGram (ECG) and ElectroOculoGram (EOG) have 
been widely used for MWL recognition [6-8]. In this paper we 
evaluate the operators’ MWL by using multi-modal 
psychophysiological signals and examine the potential and 
efficacy of semi-supervised learning technique for enhancing 
the accuracy and efficiency of high-risk MWL detection. 

II. SEMI-SUPERVISED EXTREME LEARNING MACHINE 
The SS-ELM is a semi-supervised learning algorithm based on 
ELM theory and manifold regularization framework, which can 
take advantage of the unlabeled data to improve the 
classification accuracy when labeled data are scarce [9]. It 
determines the output weights by minimizing the squared sum 
of the empirical training error of labeled data, the norm of the 
output weights, as well as the manifold regularization term 
based on both labeled and unlabeled data. 
We have the SS-ELM formulation: 
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Where λ is a tradeoff parameter,
i

Cy is a penalty factor for 

training error of data from class iy , n nL ×∈  is the graph 
Laplacian built from both labeled and unlabeled data, and

n cY ×∈ is the output matrix of the network with its -thi row 
equal to iy . 
Note that similar to the weighted ELM (W-ELM) algorithm, 
here we assign different penalty factor

i
Cy to the prediction 

errors w.r.t. samples from different classes because when the 
data is unbalanced, i.e., some classes have significantly more 
samples than other classes, traditional ELM tend to fit the 
majority classes well, but fits minority classes poorly. This 
usually results in poor generalization to the testing set. 
Therefore, in order to cope with the possibly imbalanced 
classification problem, we reweigh examples from different 
classes. Suppose that ix belongs to class iy which has

i
Ny

training samples, then we assign iξ with a penalty of

0
i

i

CC
N

=y
y

 , where 0C is a user-defined parameter as in 

traditional ELM and 
i

Ny  is the number of training samples in 

the class iy . In this way, the samples from the dominant classes 
will not be overfitted by the algorithm and the samples from a 
class with less samples will not be ignored.       
Substituting the constraints into the objective function yields 
the new formulation in matrix form: 
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where 1 2[ ( ) , ( ) , , ( ) ]T T T T l L

lH ×= ∈h x h x h x  , 
n cY ×∈   is the augmented training target with its first l rows 

equal to lY  and the rest equal to 0, and n nC ×∈ is a (penalty) 

diagonal matrix with its first l diagonal elements ii ic C=  and 
the rest equal to 0. 
Now let us solve the above optimization problem. We first 
compute the gradient of the objective function w.r.t. W and then 
by setting the gradient to zero, we obtain the optimal output 
weights (i.e., the SS-ELM solution) if L l≤ : 
      * 1( )T T T

LW H CH H LH H CYλ −= + +I                (3) 

where LI is an identity matrix of dimension L.  

If L l> (common in SSL), the optimal output weights can be 
solved by the alterative form: 
                            

* 1( )T T T
nW H CHH LHH CYλ −= + +I                     (4) 

where nI is an identity matrix of dimension n.  
In summary, SS-ELM training algorithm consists of two key 
steps: 

Step 1: Initialize an ELM network of L hidden neurons with 
random input weights and biases, and calculate the output 
matrix of the hidden neurons n LH ×∈ . 
Step 2: Use (3) or (4) to compute the output weightsW . 

III. FEATURE EXTRACTION ALGORITHM 
Usually EEG feature extraction algorithms can be divided into 
time-domain, frequency- domain, time-frequency, and 
nonlinear dynamics analysis. This paper uses the discrete 
wavelet-packet transform [10] to extract the time-frequency 
features of the physiological signals. 
Wavelet transform is a multi-scale signal analysis method. The 
method can characterize the local features of the signal in time 
and scale domain, so it is very suitable for the analysis of 
transient characteristics and time-frequency characteristics of 
non-stationary EEG signal. 

Wavelet Packet Decomposition (WPD) is a generalization of 
wavelet decomposition. In the wavelet analysis, the 
approximation part is decomposed into the approximation part 
and detail part at another level. This process is repeated until 
the maximal number of decomposition levels is reached. 
However, in the WPD details are also decomposed. WPD has 
multi-scale characteristics and provides great choice for time-
frequency analysis. In the multiresolution wavelet analysis, the 
Hilbert space 2 ( )L  is decomposed into the sum of all 

orthogonal wavelet subspaces scale fa )r( cto  jW j∈ : 

                             2 ( ) jj
L W

∈
= ⊕




                         (5) 

WPD continues to dichotomize ( 1, 2, )jW j =  , as shown in 

Fig. 1, where n
jU  is the wavelet-packet space of the scale j and 

its orthogonal basis /2
, ( ) 2 (2 )n j n j

j ku t u t k− −= − ( k is the 
translation factor) satisfies: 
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where 0 1, , 0,1, , 2 1, ( ) and ( )jj k n h k h k∈ = −   are a 
pair of orthogonal mirror filters with the relationship

1
1 0( ) ( 1) (1 )kh k h k−= − ⋅ − . 

 
Fig. 1. Schematic of the spatial wavelet packet decomposition. 



  

If ( )f t is a function in the Hilbert space 2 ( )L  , when the scale 

is small enough we can approximate the coefficient 0
0 ( )d k of 

the space 0
0U by the sampling sequence ( )f k t∆ or the 

normalized ( )f k . According to fast algorithm of WPD, the 
wavelet-packet coefficient of the j-th scale and k-th node can be 
expressed by: 

            

/ 2

0 1

( 1) / 2

1 1

( 2 ) ( ), if is even

( )
( 2 ) ( ),          otherwise

n

j
mn

j n

j
m

h m k d m n

d k
h m k d m

−

−

−

−

=
−






∑

∑
            (7) 

In this way, we can get wavelet-packet coefficients of a signal 
at all scales. It is known that the EEG signals relevant to MWL 
are in the frequency band of [0-50] Hz. The 17-channel 
electrophysiological signals are decomposed into five levels. 
Using (7), we extract the spectral power of the first six nodes 
([0-7.8], [7.8-15.6], [15.6-23.4], [23.4-31.2], [31.2-39], [39-
46.8]) as the features of the EEG signal. 

IV. DATA COLLECTION EXPERIMENTS AND DATA 
PREPROCESSING 

A. Subjects 
Six subjects (22-24 y/o, male; coded by A, B, C, D, E, and F) 
participated in the experiments. All subjects were healthy, had 
normal vision and dextromanual. Before the experiments, all 
subjects were informed of goals and procedure of the 
experiment and were trained for more than 10 hrs on aCAMS-
based task operations. 

B. Experimental Task Environment 
The simulated task platform used in our experiments is 
automated-enhanced Cabin Air Management System 
(aCAMS), which consists of four subsystems: concentration of 
oxygen (O2), air pressure (P), concentration of carbon dioxide 
(CO2), and temperature (T). In the experiment, we used the 
aCAMS to simulate the task environment in a closed cabin. The 
operator's MWL is mainly affected by the Number Of 
Subsystems (NOS) assigned to him for manual control and the 
Actuator Sensitivity (AS) in the manual control systems. The 
aCAMS simulation platform constitutes a complex human-
machine cooperative task environment. Nihon Kohden® 
measurement system was used to measure physiological signals 
at a sampling rate of 500 Hz.  

C. Experimental Procedure and Data Acquisition 
The aCAMS system has four subsystems, each having two 
control modes: automatic or manual control. The two modes of 
control can be switched arbitrarily. The control objective of the 
experiment is to maintain the output variables of the four 
subsystems within their target ranges by automatic control by 
automation systems, manual control by human operator, or a 
mixture of both modes. For manual control, there are two levels 
of actuator sensitivity (AS): Low or High. The sensitivity of the 
control variable under High AS is higher than Low AS [11].  

Each session lasts for 50 min. and consists of 10 different 
task-load conditions. The conditions #1, 4, 7, and 10 are under 
automatic control mode. Operator manually controls two 
subsystems (O2 and P) in the conditions #2 and 3, the only 
difference between the two conditions is that the AS is different. 
Fig. 2 illustrates the 10 task-load conditions in a session of 
experiment. During the last 10 s of each condition, the operator 
performs self-assessment of his performance in that condition, 
so we only consider the measured data of 290 s per condition. 

The EEG, ECG and EOG signals for each subject were 
collected during the aCAMs operation by using a signal 
acquisition instrument (sampling rate: 500 Hz). The instrument 
has the function of removing the disturbance of the power 
frequency on the electrophysiological signals. In the 
international standard 10-20 EEG electrode placement system 
[12], 15 electrodes that are most relevant to the MWL variations 
were selected, namely F3, F4, C3, C4, P3, P4, O1, O2, Fz, Cz, 
CPz, Pz, AFz, POz, and Oz [13,14]. In addition, the potential 
difference between the upper middle part of the clavicle and the 
lower middle part of the left rib was recorded as ECG signal. 
The EOG signal was measured by the potential between the 
electrodes above and below the left eye. The recorded raw 
signals is filtered by a Butterworth band-pass filter (0-40 Hz) 
and the coherent method is used to remove the eye artifacts. 
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Fig. 2. The 10 task-load conditions in an experimental session. 

D. Data Labeling 
The preprocessed data is divided by the sliding time window 
with length of 1 s (with no overlapping), then each load 
condition contains 290 sample data. In addition to physiological 
data, the experiment also records the task performance data, i.e., 
the output of the subsystems under control. Performance data 
for subject A is shown in Fig. 3. 

 
Fig. 3. The performance measures (i.e., four output time trajectories of 
human-machine cooperative control system under study) (subject A). 



where the area between the red lines is the target range and the 
area between the pink lines is the safe range. In order to quantify 
the MWL level, we define the Mental Workload Index 
(MWLI): 
     

2 2 2 2
( ) ( ) ( ) ( )O O P P CO CO T TMWLI w r t w r t w r t w r t= + + +        (8) 

where ( )r t  with different subscript is Boolean variable of the 
corresponding subsystem (when the output of the 
corresponding subsystem is in target range at time t, ( ) 0r t = ; 
otherwise ( ) 1r t = ) and w represents the weight of the 
corresponding subsystem that can be determined by: 
               1 2 3w w w w=                                                         (9) 

Where 1w represents the control weight of the corresponding 
subsystem (when the subsystem is under manual control,

1 1w = ; otherwise 1 0w = ), 2w  represents the difficulty level 
of the corresponding subsystem among four subsystems, and 

3w denotes the difficulty level of control of the corresponding 

subsystem with different level of AS. The values of 2w and 3w
are empirically determined. The basic idea of entropy method 
is to determine the weight according to the indicator variability. 
In general, the smaller the information entropy of an indicator, 
the greater the variation in the indicator, the greater the amount 
of information provided, the greater the weight. By using (11) 
and (12), we obtain the second-to-second MWLI variations, as 
shown in Fig. 4. We can see that there exists individual 
difference across 6 subjects, but the overall trend of change is 
similar, for example, condition #9 has the peak (highest) level 
of MWL. The MWL level is higher in the conditions #3, 6 and 
8, while the MWL level in the condition #2 and 5 is lower. The 
baseline conditions #1, 4, 7, and 10 are under automatic control, 
thus the MWL level in those 4 baseline conditions is zero 
(under-loaded). Based on those observations, we will classify 
the MWL into four classes (baseline, low, medium, high). 

 
Fig. 4. The change of MWLI over time for each subject. 
  

V. CLASSIFICATION RESULTS AND DISCUSSION 
In this section, we present the SSL performance across the six 
subjects. We use the WPD algorithm to extract the relevant 
features. The effectiveness of SSL algorithm for MWL 
classification problem is validated by the pertinent empirical 
results. In addition, we examine the effect of the number of 

training data and the number of unlabeled data on the 
performance of SSL algorithm. Finally, we compare the 
performance of SSL algorithm and the commonly used 
supervised learning algorithms for OFS analysis. 

In this study we utilized a windowing approach with a sliding 
time window with length of 1 s. The Daubechies wavelet (db4) 
function was used to decompose the EEG signals by using 5-
level WPD. In this way, we can obtain a dataset of 2900 feature 
data with a feature dimensionality of 102 (= 6 features/channel 
* 17 channels).  

To avoid the impact of the smaller test set on the ability of 
the SSL algorithm to effectively utilize labeled and unlabeled 
data (i.e., unbalanced data classification problem), we divide 
the dataset into labeled data and unlabeled data at the rate of 
1:4. The labeled data is equally divided into training and testing 
data. Finally, the number of training samples, test samples and 
unlabeled samples are 290, 290, and 2320, respectively. 

A. Classification Results 
In this section, the SS-ELM is applied to classify MWL. we give 
the 4-class classification confusion matrix for each subject in 
Figs. 5 and 6. Overall, using wavelet-packet-based features, 
SSL algorithm leads to promising classification performance. 

 
Fig. 5. Testing classification confusion matrix using wavelet packet features. 

 
Fig. 6. The classification confusion matrix on unlabeled sample set using 
wavelet packet features. 



B. Discussions 
1) Effect of size of labeled dataset 

To test the effect of the number of labeled training data on 
the performance of SS-ELM algorithm, we gradually increased 
the size of training set, while fixing the size of both the 
unlabeled and testing set to 2630. The training and test accuracy 
as well as the accuracy calculated on unlabeled data for each 
subject are shown in Fig. 7 (mean ± standard deviation (s.d.)). 
We can see that except for subject C, the classification 
performance for other five subjects improves with the increase 
of the number of labeled data. For subject C, when the size of 
training set is 29, the accuracy already approaches 100%, so 
with the increase of the number of training samples, there is 
little room for further improvement of the accuracy. Therefore, 
we may conclude that satisfactory classification results can be 
obtained by using only a small number of labeled data. For other 
subjects, if training samples are scarce/sparse, the increase of 
the number of training samples has a great impact on the 
accuracy of the algorithm; However, if the training set is larger, 
the accuracy of the algorithm would improve little or stops 
improving with continued increase of the number of training 
samples. In summary, the benefit of SSL algorithm is reflected 
the best in the situations where only little labeled data is 
available. 

 
Fig. 7. The classification accuracy of using training sets of different size for 
each subject. 
 

2) Effect of size of unlabeled dataset 
To test the capacity of the graph-based SSL algorithm in 
utilizing unlabeled data, we gradually increase the number of 
unlabeled data, while fixing the size of labeled set to 29. 
The corresponding classification accuracy is compared in Fig. 
8 (mean ± s.d.). We can see that except for subject C, the 
classification accuracy for other five subjects is improved with 
the increase of the number of unlabeled data. 
Does this observation really indicate that the more unlabeled 
data, the better the classification performance? To answer this 
question, we gradually increase the number of the unlabeled 
data while fixing the size of the labeled set to 290. The 
corresponding classification accuracy for each subject is shown 

in Fig. 9. It can be seen that when the number of training 
samples is 290, increasing the number of unlabeled samples has 
little effect on the classification performance. Therefore, when 
the labeled data are sufficiently extensive to characterize the 
data manifold, increasing the unlabeled data does not have 
much effect on the performance improvement. The fundamental 
advantage of the SSL algorithm for risky MWL detection is that 
if the labeled set is smaller, it has outstanding advantages over 
supervised learning; conversely, if the labeled set is large, its 
performance is comparable to that of supervised learning 
algorithm. 

 
Fig. 8. The classification accuracy of using unlabeled sets of different size for 
each subject (size of labeled set: 29). 
 

 
 
Fig. 9. The classification accuracy of using unlabeled sets of different size for 
each subject (size of labeled set: 290). 
 

3) Performance comparison with supervised learning 
In order to further verify the potential of the SS-ELM method 
for MWL classification, we compare it with four classical 
supervised learning algorithms, namely Naive Bayesian (NB), 
Random Forest (RF), Support Vector Machines (SVM), and 
ELM. The comparative results are shown in Fig. 10. 



Since the SSL algorithm takes full advantages of a large number 
of unlabeled data, its classification accuracy is shown to be 
superior to that of the four major supervising learning 
algorithms, but the improvement of accuracy depends on the 
size of training set. When the number of labeled data is small, 
the performance enhancement of the SS-ELM method is most 
significant compared with supervised learning algorithms. On 
the contrary, when the number of labeled samples is large, the 
difference in classification performance between them is only 
marginal. Consequently, the SSL algorithm would be more 
applicable to the special scenarios in which the labeled data is 
difficult or expensive to collect. 

 
Fig. 10. The comparison of classification accuracy with gradual increase of 
size of the labeled (training) set for five different classifiers. 

 

VI. CONCLUSION 
Although supervised learning techniques have shown 
promising performance in model-based MWL detection, a 
practical limitation of ML methods is the lack of sufficient 
number of labeled training data. Labeling massive data can be 
expensive or even erroneous given the little known domain 
knowledge about OFS state available. As the SSL method only 
requires small amount of labeled data, in this study the SSL 
paradigm is applied to real-time detection of high-risk MWL 
state using physiological data. We use SSL to exploit unlabeled 
data and improve the accuracy of high-risk MWL state 
detection. 

The results presented show that the proposed SSL approach 
is a promising alternative for risky MWL detection based on 
physiological signals. By exploiting the information contained 
in unlabeled data, the graphic semi-supervised learning method 

can reduce the computational cost and at the same time improve 
the detection accuracy. It was shown that even perfect 
classification accuracy can be achieved sometimes by SS-ELM. 
Furthermore, more can be gained by using SSL method with the 
increase of the size of unlabeled dataset. This result suggests 
that by exploring the structure of those unlabeled data, we can 
exploit additional information to improve the performance of 
MWL detection. 
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